【題目】如圖,直線AB、CD相交于點O.已知∠BOD=75°,OE把∠AOC分成兩個角,且∠AOE:∠EOC=2:3.
(1)求∠AOE的度數;
(2)若OF平分∠BOE,問:OB是∠DOF的平分線嗎?試說明理由.
【答案】(1) 30°;(2) OB是∠DOF的平分線,理由見解析
【解析】
(1)設∠AOE=2x,根據對頂角相等求出∠AOC的度數,根據題意列出方程,解方程即可;
(2)根據角平分線的定義求出∠BOF的度數即可.
(1)∵∠AOE:∠EOC=2:3.∴設∠AOE=2x,則∠EOC=3x,∴∠AOC=5x.
∵∠AOC=∠BOD=75°,∴5x=75°,解得:x=15°,則2x=30°,∴∠AOE=30°;
(2)OB是∠DOF的平分線.理由如下:
∵∠AOE=30°,∴∠BOE=180°﹣∠AOE=150°.
∵OF平分∠BOE,∴∠BOF=75°.
∵∠BOD=75°,∴∠BOD=∠BOF,∴OB是∠DOF的角平分線.
科目:初中數學 來源: 題型:
【題目】某學校為了推動球類運動的普及,成立多個球類運動社團,為此,學生會采取抽樣調查的方法,從足球、乒乓球、籃球、排球四個項目調查了若干名學生的興趣愛好(要求每位同學只能選擇其中一種自己喜歡的球類運動),并將調查結果繪制成了如下條形統(tǒng)計圖和扇形統(tǒng)計圖(不完整).請你根據圖中提供的信息,解答下列問題:
(1)本次抽樣調查,共調查了 名學生;
(2)請將條形統(tǒng)計圖和扇形統(tǒng)計圖補充完整;
(3)若該學校共有學生1800人,根據以上數據分析,試估計選擇排球運動的同學約有多少人?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,在△ABC中,∠A=30°,∠B=60°.
(1)作∠B的平分線BD,交AC于點D;作AB的中點E(要求:尺規(guī)作圖,保留作圖痕跡,不必寫作法和證明);
(2)連接DE,求證:△ADE≌△BDE.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某班有學生55人,其中男生與女生的人數之比為6:5.
(1)求出該班男生與女生的人數;
(2)學校要從該班選出20人參加學校的合唱團,要求:①男生人數不少于7人;②女生人數超過男生人數2人以上.請問男、女生人數有幾種選擇方案?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中有Rt△ABC,∠A=90°,AB=AC,A(﹣2,0)、B(0,1)、C(d,2).
(1)求d的值;
(2)將△ABC沿x軸的正方向平移,在第一象限內B、C兩點的對應點B′、C′正好落在某反比例函數圖象上.請求出這個反比例函數和此時的直線B′C′的解析式;
(3)在(2)的條件下,直線BC交y軸于點G.問是否存在x軸上的點M和反比例函數圖象上的點P,使得四邊形PGMC′是平行四邊形?如果存在,請求出點M和點P的坐標;如果不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,某小區(qū)樓房附近有一個斜坡,小張發(fā)現樓房在水平地面與斜坡處形成的投影中,在斜坡上的影子長CD=6m,坡角到樓房的距離CB=8m.在D點處觀察點A的仰角為54°,已知坡角為30°,你能求出樓房AB的高度嗎?(tan54°≈1.38,結果精確到0.1m)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校在開展 “校園獻愛心”活動中,準備向南部山區(qū)學校捐贈男、女兩種款式的書包.已知男款書包的單價50元/個,女款書包的單價70元/個.
(1)原計劃募捐3400元,購買兩種款式的書包共60個,那么這兩種款式的書包各買多少個?
(2)在捐款活動中,由于學生捐款的積極性高漲,實際共捐款4800元,如果至少購買兩種款式的書包共80個,那么女款書包最多能買多少個?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖是一組有規(guī)律的圖案,它們是由邊長相同的正方形和正三角形拼接而成,第①個圖案有4個三角形和1個正方形,第②個圖案有7個三角形和2個正方形,第③個圖案有10個三角形和3個正方形,…依此規(guī)律,第n個圖案有 ____________個三角形(用含n的代數式表示);
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com