【題目】中,,點邊上,把沿折疊后,使得點落在點處,連接,若,則______

【答案】;

【解析】

分兩種情形分別求解即可解決問題.

解:如圖1中,當點E在直線BC的下方時,

AB=AC,∠BAC=90°,
∴∠ABC=45°,
∵△ADB≌△ADE
BD=DE,∠ABD=AED=45°,∠DAB=DAE,
∴∠DBE=DEB=20°
∴∠ABE=AEB=65°
∴∠DAB=180°-130°=25°,
∴∠ADC=ABC+BAD=70°
如圖2中,當點E在直線BC的上方時,

易知∠ABE=AEB=45°-20°=25°,
∴∠BAD=180°-50°=65°,
∴∴∠ADC=ABC+BAD=110°,
故答案為70°110°

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,直線yx軸、y軸分別交于點BC,拋物線yB,C兩點,且與x軸的另一個交點為點A,連接AC

1)求拋物線的解析式;

2)在拋物線上是否存在點D(與點A不重合),使得SDBCSABC,若存在,求出點D的坐標;若不存在,請說明理由;

3)有寬度為2,長度足夠長的矩形(陰影部分)沿x軸方向平移,與y軸平行的一組對邊交拋物線于點P和點Q,交直線CB于點M和點N,在矩形平移過程中,當以點P,Q,M,N為頂點的四邊形是平行四邊形時,求點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】知識背景

a0x0時,因為(20,所以x﹣2+0,從而x+(當x=時取等號).

設函數(shù)y=x+(a0,x0),由上述結論可知:當x=時,該函數(shù)有最小值為2

應用舉例

已知函數(shù)為y1=x(x0)與函數(shù)y2=(x0),則當x==2時,y1+y2=x+有最小值為2=4.

解決問題

(1)已知函數(shù)為y1=x+3(x﹣3)與函數(shù)y2=(x+3)2+9(x﹣3),當x取何值時,有最小值?最小值是多少?

(2)已知某設備租賃使用成本包含以下三部分:一是設備的安裝調(diào)試費用,共490元;二是設備的租賃使用費用,每天200元;三是設備的折舊費用,它與使用天數(shù)的平方成正比,比例系數(shù)為0.001.若設該設備的租賃使用天數(shù)為x天,則當x取何值時,該設備平均每天的租貨使用成本最低?最低是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,AB=20cm,AD=30cm,ABC=60°,點Q從點B出發(fā)沿BA向點A勻速運動,速度為2cm/s,同時,點P從點D出發(fā)沿DC向點C勻速運動,速度為3cm/s,當點P停止運動時,點Q也隨之停止運動,過點PPMADAD于點M,連接PQ、QM.設運動的時間為ts(0<t≤6).

(1)當PQPM時,求t的值;

(2)設PQM的面積為y(cm2),求yt之間的函數(shù)關系式;

(3)是否存在某一時刻t,使得PQM的面積是ABCD面積的?若存在,求出相應t的值;若不存在,請說明理由;

(4)過點MMNABBC于點N,是否存在某一時刻t,使得P在線段MN的垂直平分線上?若存在,求出相應t的值;若不存在,請說明理由;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等邊中,D為邊AC的延長線上一點(),平移線段BC,使點C移動到點D,得到線段EDMED的中點,過點MED的垂線,交BC于點F,交AC于點G

1)依題意補全圖形;

2)求證:;

3)連接DF并延長交AB于點H,用等式表示線段AHCG的數(shù)量關系,并證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明購買A,B兩種商品,每次購買同一種商品的單價相同,具體信息如下表:

次數(shù)

購買數(shù)量(件

購買總費用(元

A

B

第一次

2

1

55

第二次

1

3

65

根據(jù)以上信息解答下列問題:

(1)求A,B兩種商品的單價;

(2)若第三次購買這兩種商品共12件,且A種商品的數(shù)量不少于B種商品數(shù)量的2倍,請設計出最省錢的購買方案,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知邊長為4的正方形ABCDEBC邊上一動點(B、C不重合),連結AE,作EF⊥AE∠BCD的外角平分線于F,設BEx,△ECF的面積為y,下列圖象中,能表示yx的函數(shù)關系的圖象大致是( )

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】綜合與探究

如圖,拋物線軸交于、兩點,與軸交于點.

1)求拋物線解析式:

2)拋物線對稱軸上存在一點,連接、,當值最大時,求點H坐標:

3)若拋物線上存在一點,,當時,求點坐標:

4)若點M平分線上的一點,點是平面內(nèi)一點,若以、、為頂點的四邊形是矩形,請直接寫出點坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】數(shù)學興趣小組的同學們,想利用自己所學的數(shù)學知識測量學校旗桿的高度:下午活動時間,興趣小組的同學們來到操場,發(fā)現(xiàn)旗桿的影子有一部分落在了墻上(如圖所示).同學們按照以下步驟進行測量:測得小明的身高1.65米,此時其影長為2.5米;在同一時刻測量旗桿影子落在地面上的影長BC9米,留在墻上的影高CD2米,請你幫助興趣小組的同學們計算旗桿的高度.

查看答案和解析>>

同步練習冊答案