【題目】某學(xué)校開(kāi)展“青少年科技創(chuàng)新比賽”活動(dòng),“喜洋洋”代表隊(duì)設(shè)計(jì)了一個(gè)遙控車(chē)沿直線軌道AC做勻速直線運(yùn)動(dòng)的模型.甲、乙兩車(chē)同時(shí)分別從A,B兩處出發(fā),沿軌道到達(dá)C處,B在AC上,甲的速度是乙的速度的1.5倍,設(shè)t(分)后甲、乙兩遙控車(chē)與B處的距離分別為d1,d2,則d1,d2與t的函數(shù)關(guān)系如圖,試根據(jù)圖象解決下列問(wèn)題:
(1)填空:乙的速度v2= 米/分;
(2)寫(xiě)出d1與t的函數(shù)關(guān)系式:
(3)若甲、乙兩遙控車(chē)的距離超過(guò)10米時(shí)信號(hào)不會(huì)產(chǎn)生相互干擾,試探求什么時(shí)間兩遙控車(chē)的信號(hào)不會(huì)產(chǎn)生相互干擾?
【答案】(1)40;(2)d1=;(3)0≤t<2.5.
【解析】試題分析:(1)根據(jù)路程與時(shí)間的關(guān)系,可得答案;
(2)根據(jù)甲的速度是乙的速度的1.5倍,可得甲的速度,根據(jù)路程與時(shí)間的關(guān)系,可得a的值,根據(jù)待定系數(shù)法,可得答案;
(3)根據(jù)兩車(chē)的距離,可得不等式,根據(jù)解不等式,可得答案.
試題解析:(1)乙的速度v2=120÷3=40(米/分),
(2)v1=1.5v2=1.5×40=60(米/分),
60÷60=1(分鐘),a=1,
d1=;
(3)d2=40t,
當(dāng)0≤t<1時(shí),d2+d1>10,
即-60t+60+40t>10,
解得0≤t<2.5,
∵0≤t<1,
∴當(dāng)0≤t<1時(shí),兩遙控車(chē)的信號(hào)不會(huì)產(chǎn)生相互干擾;
當(dāng)1≤t≤3時(shí),d2-d1>10,
即40t-(60t-60)>10,
當(dāng)1≤t<時(shí),兩遙控車(chē)的信號(hào)不會(huì)產(chǎn)生相互干擾
綜上所述:當(dāng)0≤t<2.5時(shí),兩遙控車(chē)的信號(hào)不會(huì)產(chǎn)生相互干擾.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD是平行四邊形,以AB為直徑的⊙0經(jīng)過(guò)點(diǎn)D,E是⊙O上一點(diǎn),且∠AED=45°,
(1)求證:CD是⊙O的切線.
(2)若⊙O的半徑為3,AE=5,求∠DAE的正弦值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AD⊥DF,EC⊥DF,∠1=∠3,∠2=∠4,求證:AE∥DF.(請(qǐng)?jiān)谙旅娴慕獯疬^(guò)程的空格內(nèi)填空或在括號(hào)內(nèi)填寫(xiě)理由)
證明:∵AD⊥DF,EC⊥DF,(已知)
∴∠BFD=∠ADF=90°.( )
∴EC∥( )
∴∠EBA=_____(兩直線平行,內(nèi)錯(cuò)角相等)
∵∠2=∠4,(已知)
∴∠EBA=∠4.(等量代換)
∴AB∥_____.( )
∴∠2+∠ADC=180°.( )
∴∠2+∠ADF+∠3=180°.
∵∠1=∠3.(已知)
∴∠2+∠ADF+∠1=180°.(等量代換)
∴_____+∠ADF=180°.
∴AE∥DF.( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知P(-5,m)和Q(3,m)是二次函數(shù)y=2x2+bx+1圖象上的兩點(diǎn).
(1)求b的值;
(2)將二次函數(shù)y=2x2+bx+1的圖象沿y軸向上平移k(k>0)個(gè)單位,使平移后的圖象與x軸無(wú)交點(diǎn),求k的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AC⊥BC,BD⊥AD,AC 與BD 交于O,AC=BD.
求證:(1)BC=AD;
(2)△OAB是等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)機(jī)器人從數(shù)軸原點(diǎn)出發(fā),沿?cái)?shù)軸正方向,以每前進(jìn)3步后退2步的程序運(yùn)動(dòng)。設(shè)該機(jī)器人每秒鐘前進(jìn)或后退1步,并且每步的距離是1個(gè)單位長(zhǎng),表示第秒時(shí)機(jī)器人在數(shù)軸上的位置所對(duì)應(yīng)的數(shù)。給出下列結(jié)論:①;②;③;④。其中,正確的結(jié)論的序號(hào)是( )
A.①③B.②③C.①②③D.①②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知A點(diǎn)坐標(biāo)為(5,0),直線y=kx+b(b>0)與y軸交于點(diǎn)B,∠BCA=60°,連接AB,∠α=105°,則直線y=kx+b的表達(dá)式為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(問(wèn)題原型)如圖,在中,對(duì)角線的垂直平分線交于點(diǎn),交于點(diǎn),交于點(diǎn).求證:四邊形是菱形.
(小海的證法)證明:
是的垂直平分線,
,(第一步)
,(第二步)
.(第三步)
四邊形是平行四邊形.(第四步)
四邊形是菱形. (第五步)
(老師評(píng)析)小海利用對(duì)角線互相平分證明了四邊形是平行四邊形,再利用對(duì)角線互相垂直證明它是菱形,可惜有一步錯(cuò)了.
(挑錯(cuò)改錯(cuò))(1)小海的證明過(guò)程在第________步上開(kāi)始出現(xiàn)了錯(cuò)誤.
(2)請(qǐng)你根據(jù)小海的證題思路寫(xiě)出此題的正確解答過(guò)程,
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,PB與⊙O相切于點(diǎn)B,過(guò)點(diǎn)B作OP的垂線BA,垂足為C,交⊙O于點(diǎn)A,連結(jié)PA,AO,AO的延長(zhǎng)線交⊙O于點(diǎn)E,與PB的延長(zhǎng)線交于點(diǎn)D.
(1)求證:PA是⊙O的切線;
(2)若tan∠BAD=,且OC=4,求BD的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com