【題目】(1)定義:直角三角形兩直角邊的平方和等于斜邊的平方。如:直角三角形的直角邊分別為3、4,則斜邊的平方=32+42=25.已知:Rt△ABC中,∠C=90°,AC=8,AB=10,直接寫出BC2=___.
(2)應用:已知正方形ABCD的邊長為4,點P為AD邊上的一點,AP=AD,請利用“兩點之間線段最短”這一原理,在線段AC上畫出一點M,使MP+MD最小,并直接寫出最小值的平方為多少?
【答案】(1)36;(2)17;
【解析】
(1)根據(jù)直角三角形兩直角邊的平方和等于斜邊的平方計算即可;
(2)如圖,連接BM,PB.因為PM+MD=PM+BM≥PB,推出PM+DM的最小值為PB的長,由此即可解決問題;
(1)在Rt△ABC中,∵∠ACB=90°,AC=8,AB=10,
∴BC2=AB2AC2=10064=36,
故答案為36.
(2)如圖,連接BM,PB.
∵四邊形ABCD是正方形,
∴∠BAP=90°,B. D關于AC對稱,
∴MD=MB,
∴PM+MD=PM+BMPB,
∴PM+DM的最小值為PB的長,
在Rt△ABP中,PB2=AB2+PA2=42+12=17,
故答案為17.
科目:初中數(shù)學 來源: 題型:
【題目】直線AB與x軸交于點A(1,0),與y軸交于點B(0,-2)
(1)求直線AB所對應的函數(shù)關系式;
(2)若直線AB上一點C在第一象限且點C的坐標為(a,2),求△BOC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學校團委開展“關愛殘疾兒童”愛心捐書活動,全校師生踴躍捐贈各類書籍共6000本.為了解各類書籍的分布情況,從中隨機抽取了部分書籍分四類進行統(tǒng)計:A.藝術類;B.文學類;C.科普類;D.其他,并將統(tǒng)計結果繪制成如圖所示的兩幅不完整的統(tǒng)計圖.
(1)這次統(tǒng)計共抽取了200____本書籍,扇形統(tǒng)計圖中的m=40____,∠α的度數(shù)是___;
(2)請將條形統(tǒng)計圖補充完整;
(3)估計全校師生共捐贈了多少本文學類書籍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,E是正方形ABCD的邊AB上的動點,EF⊥DE交BC于點F.
(1)求證:△ADE∽△BEF.
(2)設正方形的邊長為4,AE=x,BF=y.當x取什么值時,y有最大值?并求出這個最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學校團委開展“關愛殘疾兒童”愛心捐書活動,全校師生踴躍捐贈各類書籍共6000本.為了解各類書籍的分布情況,從中隨機抽取了部分書籍分四類進行統(tǒng)計:A.藝術類;B.文學類;C.科普類;D.其他,并將統(tǒng)計結果繪制成如圖所示的兩幅不完整的統(tǒng)計圖.
(1)這次統(tǒng)計共抽取了200____本書籍,扇形統(tǒng)計圖中的m=40____,∠α的度數(shù)是___;
(2)請將條形統(tǒng)計圖補充完整;
(3)估計全校師生共捐贈了多少本文學類書籍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC和△BCD中,∠BAC=∠BCD=90°,AB=AC,CB=CD.延長CA至點E,使AE=AC;延長CB至點F,使BF=BC.連接AD,AF,DF,EF.延長DB交EF于點N.
(1)求證:AD=AF;
(2)求證:BD=EF;
(3)試判斷四邊形ABNE的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,折疊長方形紙片ABCD的一邊AD,使點D落在BC邊上的點F處,已知AB=8cm,BC=10cm,則折痕AE的長為( )
A.cmB. cmC.12cmD.13 cm
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為打好精準脫貧攻堅戰(zhàn),精準施策,幫扶脫貧,某行政部門對其結對幫扶的村民合作社種植的三種特色農(nóng)產(chǎn)品A、B、C在5月份的銷售情況進行調查統(tǒng)計,繪制成如下兩個統(tǒng)計圖(均不完整).請你結合圖中的信息,解答下列問題:
(1)該村民合作社5月份共銷售這三種特色農(nóng)產(chǎn)品多少噸?
(2)該村民合作社計劃6月份銷售A、B、C三種特色農(nóng)產(chǎn)品共500噸,根據(jù)該村民合作社5月份的銷售情況,問該村民合作社應準備C品種特色農(nóng)產(chǎn)品多少噸比較合理?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com