【題目】春臨大地,學(xué)校決定給長12米,寬9米的一塊長方形展示區(qū)進(jìn)行種植改造現(xiàn)將其劃分成如圖兩個區(qū)域:區(qū)域Ⅰ矩形ABCD部分和區(qū)域Ⅱ四周環(huán)形部分,其中區(qū)域Ⅰ用甲、乙、丙三種花卉種植,且EF平分BD,G,H分別為AB,CD中點.
(1)若區(qū)域Ⅰ的面積為Sm2,種植均價為180元/m2,區(qū)域Ⅱ的草坪均價為40元/m2,且兩區(qū)域的總價為16500元,求S的值.
(2)若AB:BC=4:5,區(qū)域Ⅱ左右兩側(cè)草坪環(huán)寬相等,均為上、下草坪環(huán)寬的2倍
①求AB,BC的長;
②若甲、丙單價和為360元/m2,乙、丙單價比為13:12,三種花卉單價均為20的整數(shù)倍.當(dāng)矩形ABCD中花卉的種植總價為14520元時,求種植乙花卉的總價.
【答案】(1)S的值為87;(2)①AB=8,BC=10;②1560元
【解析】
(1)根據(jù)題意可得180S+(108﹣S)×40=16500,解方程即可;
(2)①設(shè)區(qū)域Ⅱ四周寬度為a,則由題意(9﹣2a):(12﹣4a)=4:5,解得a=,由此即可解決問題;
②設(shè)乙、丙瓷磚單價分別為13x元/m2和12x元/m2,則甲的單價為(360﹣12x)元/m2,由GH∥AD,可得甲的面積=矩形ABCD的面積的一半,設(shè)乙的面積為s,則丙的面積為(40﹣s),由題意40(360﹣12x)+13xs+12x(40﹣s)=14520,解方程求得s=,結(jié)合s的實際意義解答.
解:(1)由題意180S+(108﹣S)×40=16500,
解得S=87,
∴S的值為87;
(2)①設(shè)區(qū)域Ⅱ上、下草坪環(huán)寬度為a,則左右兩側(cè)草坪環(huán)寬度為2a,
由題意(9﹣2a):(12﹣4a)=4:5,解得a=,
∴AB=9﹣2a=8,CB=12﹣4a=10;
②設(shè)乙、丙瓷磚單價分別為13x元/m2和12x元/m2,則甲的單價為(360﹣12x)元/m2,
∵GH∥AD,
∴甲的面積=矩形ABCD的面積的一半=40,設(shè)乙的面積為s,則丙的面積為(40﹣s),
由題意40(360﹣12x)+13xs+12x(40﹣s)=14520,
解得s=,
∵0<s<40,
∴0<<40,又∵360﹣12x>0,
綜上所述,3<x<30,39<13x<390,
∵三種花卉單價均為20的整數(shù)倍,
∴乙花卉的總價為:1560元.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知是反比例函數(shù)圖象上的兩點,軸,交軸于點.動點從坐標(biāo)原點出發(fā),沿勻速運動,終點為.過點作軸于.設(shè)的面積為點運動的時間為則關(guān)于的函數(shù)圖象大致為( )
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】近日,某中學(xué)舉辦了一次以“弘揚(yáng)傳統(tǒng)文化”為主題的漢字聽寫比賽,初一和初二兩個年級各有600名學(xué)生參加,為了更好地了解本次比賽成績的分布情況,學(xué)校分別從兩個年級隨機(jī)抽取了若干名學(xué)生的成績作為樣本進(jìn)行分析,下面是初二年級學(xué)生成績樣本的頻數(shù)分布表和頻數(shù)分布直方圖(不完整,每組分?jǐn)?shù)段中的分?jǐn)?shù)包括最低分,不包括最高分)
初二學(xué)生樣本成績頻數(shù)分布表 | ||
分組/分 | 頻數(shù) | 頻率 |
50~60 | 2 | |
60~70 | 4 | 0.10 |
70~80 | 0.20 | |
80~90 | 14 | 0.35 |
90~100 | ||
合計 | 40 | 1.00 |
請根據(jù)所給信息,解答下列問題:
(1)補(bǔ)全成績頻數(shù)分布表和頻數(shù)分布直方圖.
(2)若初二學(xué)生成績樣本中80~90分段的具體成績?yōu)椋?/span>
80 80 81.5 82 82.5 82.5 83 84.5 85 86.5 87 88 88.5 89
①根據(jù)上述信息,估計初二學(xué)生成績的中位數(shù)為__________.
②若初一學(xué)生樣本成績的中位數(shù)為80,甲同學(xué)在比賽中得到了82分,在他所在的年級中位居275名,根據(jù)上述信息推斷甲同學(xué)所在年級為__________(選填“初一”或者“初二”).
③若成績在85分及以上均為“優(yōu)秀”,請你根據(jù)抽取的樣本數(shù)據(jù),估計初二年級學(xué)生中達(dá)到“優(yōu)秀”的學(xué)生人數(shù)為__________人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與軸交于兩點(點在點左側(cè)),與軸交于點的面積為.動點從點出發(fā)沿方向以每秒個單位的速度向點運動,過作軸交于.交拋物線于.
求拋物線的解析式.
當(dāng)最大時,求運動的時間.
經(jīng)過多長時間,點到點、點的距離相等?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖象與反比例函數(shù)的圖象交于點,點為軸正半軸上一點,且,的面積是,則_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)的與的部分對應(yīng)值如表:
下列結(jié)論:拋物線的開口向上;②拋物線的對稱軸為直線;③當(dāng)時,;④拋物線與軸的兩個交點間的距離是;⑤若是拋物線上兩點,則,其中正確的個數(shù)是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,在筆山銀子巖坡頂處的同一水平面上有一座移動信號發(fā)射塔,
筆山職中數(shù)學(xué)興趣小組的同學(xué)在斜坡底處測得該塔的塔頂的仰角為,然后他們沿著坡度為的斜坡攀行了米,在坡頂處又測得該塔的塔頂的仰角為.求:
坡頂到地面的距離;
移動信號發(fā)射塔的高度(結(jié)果精確到米).
(參考數(shù)據(jù):,,)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com