【題目】在平面直角坐標(biāo)系中,直線與軸,軸分別交于點,,拋物線經(jīng)過點,將點向右平移5個單位長度,得到點,若拋物線與線段恰有一個公共點,結(jié)合函數(shù)圖象,則的取值范圍__________.
【答案】或或
【解析】
先根據(jù)直線的解析式求出點A,B的坐標(biāo),再求出點C的坐標(biāo),將點A的坐標(biāo)代入拋物線,求出a和b的關(guān)系式為,從而可得拋物線的對稱軸為,則拋物線與x軸的另一個交點為;需分和兩種情況分析,再根據(jù)拋物線與線段BC恰有一個公共點建立不等式求解即可.
令,代入直線得:,則點A的坐標(biāo)為
令,代入直線得:,則點B的坐標(biāo)為
將點向右平移5個單位長度,得到點,則點C的坐標(biāo)為
將代入拋物線得:,即
則拋物線的解析式為,因此其對稱軸為,與x軸的另一個交點的坐標(biāo)為
由題意得,所以分以下兩種情況討論:
(1)如圖1,當(dāng)時,要使拋物線與線段BC恰有一個公共點
則當(dāng)時,才能符合題意,即
解得:
(2)如圖2,當(dāng)時,要使拋物線與線段BC恰有一個公共點,又需分兩種情況:
①拋物線的頂點恰好在線段BC上,此時公共點為拋物線的頂點,符合題意
則當(dāng)時,,即
解得:
②拋物線的頂點在線段BC的上方,此時當(dāng)時,才能符合題意
將代入拋物線得:
解得:
綜上,若拋物線與線段BC恰有一個公共點,a的取值范圍為或或
故答案為:或或.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(知識回顧)
我們把連結(jié)三角形兩邊中點的線段叫做三角形的中位線,并且有:三角形的中位線平行于第三邊,并且等于第三邊的一半.
(定理證明)
將下列的定理證明補充完整:
已知:如圖①,在△ABC中,點D、E分別是邊AB、AC中點,連結(jié)DE.
求證:
證明:
(定理應(yīng)用)
如圖②,在△ABC中,AB=10,∠ABC=60°,點P、Q分別是邊AC、BC的中點,連結(jié)PQ.
(1)線段PQ的長為 .
(2)以點C為一個端點作線段CD(CD與AB不平行),連結(jié)AD,取AD的中點M,連結(jié)PM、QM.
①在圖②中補全圖形.
②當(dāng)∠PQM=∠PMQ時,求CD的長.
③在②的條件下,當(dāng)△PQM面積最大時,直接寫出∠BCD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:點P在△ABC內(nèi),且滿足∠APB=∠APC(如下圖),∠APB+∠BAC=180°,
(1)求證:△PAB∽△PCA:
(2)如下圖,如果∠APB=120°,∠ABC=90°求的值;
(3)如圖,當(dāng)∠BAC=45°,△ABC為等腰三角形時,求tan∠PBC的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,點O在邊AB上,以點O為圓心,OA為半徑的圓經(jīng)過點C,過點C作直線MN,使∠BCM=2∠A.
(1)判斷直線MN與⊙O的位置關(guān)系,并說明理由;
(2)若OA=4,∠BCM=60°,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知如圖:為測量一個圓的半徑,采用了下面的方法:將圓平放在一個平面上,用一個含有30°角的三角板和一把無刻度的直尺,按圖示的方式測量(此時,⊙O與三角板和直尺分別相切,切點分別為點C、點B),若量得AB=5cm,試求圓的半徑以及的弧長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店經(jīng)銷一種雙肩包,已知這種雙肩包的成本價每個20元,市場調(diào)查發(fā)現(xiàn),這種雙肩包每天的銷售量(單位:個)與銷售單價(單位:元)有如下關(guān)系:()設(shè)這種雙肩包每天的銷售利潤為元.
(1)這種雙肩包銷售單價定為多少元時,每天的銷售利潤最大?最大利潤是多少元?
(2)如果物價部門規(guī)定這種雙肩包的銷售單價不高于48元,該商店銷售這種雙肩包每天要獲得300元的銷售利潤,銷售單價應(yīng)定為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校一課外活動小組為了解學(xué)生最喜歡的球類運動情況,隨機抽查本校九年級的200名學(xué)生,調(diào)查的結(jié)果如圖所示.請根據(jù)該扇形統(tǒng)計圖解答以下問題:
(1)求圖中的x的值;
(2)求最喜歡乒乓球運動的學(xué)生人數(shù);
(3)若由3名最喜歡籃球運動的學(xué)生,1名最喜歡乒乓球運動的學(xué)生,1名最喜歡足球運動的學(xué)生組隊外出參加一次聯(lián)誼活動.欲從中選出2人擔(dān)任組長(不分正副),列出所有可能情況,并求2人均是最喜歡籃球運動的學(xué)生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某地質(zhì)量監(jiān)管部門對轄區(qū)內(nèi)的甲、乙兩家企業(yè)生產(chǎn)的某同類產(chǎn)品進行檢查,分別隨機抽取了50件產(chǎn)品并對某一項關(guān)鍵質(zhì)量指標(biāo)做檢測,獲得了它們的質(zhì)量指標(biāo)值s,并對樣本數(shù)據(jù)(質(zhì)量指標(biāo)值s)進行了整理、描述和分析.下面給出了部分信息.
a.該質(zhì)量指標(biāo)值對應(yīng)的產(chǎn)品等級如下:
質(zhì)量指標(biāo)值 | |||||
等級 | 次品 | 二等品 | 一等品 | 二等品 | 次品 |
說明:等級是一等品,二等品為質(zhì)量合格(其中等級是一等品為質(zhì)量優(yōu)秀).
等級是次品為質(zhì)量不合格.
b.甲企業(yè)樣本數(shù)據(jù)的頻數(shù)分布統(tǒng)計表如下(不完整).
c.乙企業(yè)樣本數(shù)據(jù)的頻數(shù)分布直方圖如下.
甲企業(yè)樣本數(shù)據(jù)的頻數(shù)分布表
分組 | 頻數(shù) | 頻率 |
2 | 0.04 | |
m | ||
32 | n | |
0.12 | ||
0 | 0.00 | |
合計 | 50 | 1.00 |
乙企業(yè)樣本數(shù)據(jù)的頻數(shù)分布直方圖
d.兩企業(yè)樣本數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)、極差、方差如下:
平均數(shù) | 中位數(shù) | 眾數(shù) | 極差 | 方差 | |
甲企業(yè) | 31.92 | 32.5 | 34 | 15 | 11.87 |
乙企業(yè) | 31.92 | 31.5 | 31 | 20 | 15.34 |
根據(jù)以上信息,回答下列問題:
(1)m的值為________,n的值為________.
(2)若從甲企業(yè)生產(chǎn)的產(chǎn)品中任取一件,估計該產(chǎn)品質(zhì)量合格的概率為________;若乙企業(yè)生產(chǎn)的某批產(chǎn)品共5萬件,估計質(zhì)量優(yōu)秀的有________萬件;
(3)根據(jù)圖表數(shù)據(jù),你認(rèn)為________企業(yè)生產(chǎn)的產(chǎn)品質(zhì)量較好,理由為______________.(從某個角度說明推斷的合理性)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解鹽瀆街道~歲居民最喜歡的春節(jié)晚會節(jié)目類型,某興趣小組對街道內(nèi)該年齡段部分居民展開了隨機問卷調(diào)查(每人只能選擇其中一項),并將調(diào)查數(shù)據(jù)整理后繪成如下兩幅不完整的統(tǒng)計圖. 請根據(jù)圖中信息解答下列問題:
(1)求參與問卷調(diào)查的總?cè)藬?shù);
(2)補全條形統(tǒng)計圖,并求出扇形的圓心角;
(3)該街道~歲的居民約人,估算這些人中最喜歡歌舞類節(jié)目的人數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com