【題目】如圖,已知△ABC,ABC=2C,B為圓心任意長為半徑作弧,BABC于點E. F,分別以E. F為圓心,以大于EF的長為半徑作弧,兩弧交于點P,作射線BPAC于點,則下列說法不正確的是( )

A.ADB=ABCB.AB=BDC.AC=AD+BDD.ABD=BCD

【答案】B

【解析】

根據(jù)作圖方法可得BD平分∠ABC,進而可得∠ABD=DBC=ABC,然后根據(jù)條件∠ABC=2C可證明∠ABD=DBC=C,再根據(jù)三角形內(nèi)角和外角的關(guān)系可得A說法正確;根據(jù)等角對等邊可得DB=CD,進而可得AC=AD+BD,可得C說法正確;根據(jù)等量代換可得D正確.

由題意可得BD平分∠ABC

A. BD平分∠ABC,

∴∠ABD=DBC=ABC,

∵∠ABC=2C,∠ADB=C+DBC,

∴∠ADB=2C

∴∠ADB=ABC,故A不合題意;

B. ∵∠A≠ADB,

AB≠BD,故此選項符合題意;

C. ∵∠DBC=ABC,∠ABC=2C,

∴∠DBC=C,

DC=BD,

AC=AD+DC,

AC=AD+BD,故此選項不合題意;

D. ∵∠ABD=ABC,∠ABC=2C,

∴∠ABD=C,故此選項不合題意;

故選B.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知∠ABC=90°,D是直線AB邊上的點,AD=BC

1)如圖1,點D在線段AB上,過點AAFAB,且AF=BD,連接DC、DF、CF,試判斷△CDF的形狀并說明理由;

2)如圖2,點D在線段AB的延長線上,點F在點A的左側(cè),其他條件不變,以上結(jié)論是否仍然成立?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點E、點F分別是等邊△ABC的邊ABAC上的點,且BE=AF,CEBF 相交于點P,則∠BPC的大小為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB⊙O的直徑,點CAB的延長線上,AD平分∠CAE⊙O于點D,且AE⊥CD,垂足為點E

1)求證:直線CE⊙O的切線.

2)若BC=3CD=3,求弦AD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們知道,兩邊及其中一邊的對角分別對應相等的兩個三角形不一定全等.那么在什么情況下,它們會全等?

1)閱讀與證明:

對于這兩個三角形均為直角三角形,顯然它們?nèi)龋?/span>

對于這兩個三角形均為鈍角三角形,可證它們?nèi)龋ㄗC明略).

對于這兩個三角形均為銳角三角形,它們也全等,可證明如下:

如圖所示,均為銳角三角形,,

求證:

證明:分別過點B,于點D于點

,

____________________________________________________________

(請你將上述證明過程補充完整)

2)歸納與敘述:由(1)可得到一個正確結(jié)論,請你寫出這個結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若拋物線軸兩個交點間的距離為2,稱此拋物線為定弦拋物線,已知某定弦拋物線的對稱軸為直線,將此拋物線向左平移2個單位,再向下平移3個單位,得到的拋物線過點( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】數(shù)學課上,張老師舉了下面的例題:

1 等腰三角形中,,求的度數(shù).(答案:

2 等腰三角形中,,求的度數(shù).(答案:

張老師啟發(fā)同學們進行變式,小敏編了如下一題:

變式 等腰三角形中,,求的度數(shù).

(1)請你解答以上的變式題.

(2)解(1)后,小敏發(fā)現(xiàn),的度數(shù)不同,得到的度數(shù)的個數(shù)也可能不同.如果在等腰三角形中,設,當有三個不同的度數(shù)時,請你探索的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖6,菱形ABCD,對角線AC、BD交于點O,BE⊥DC,垂足為E,交AC于點F.

求證:(1)△ABF∽△BED;(2)求證:.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABCD,直線 EF 分別交 ABCD于 E、FEG 平分∠AEF,

1)求證:EGF 是等腰三角形.

2)若∠1=40°,求∠2 的度數(shù).

查看答案和解析>>

同步練習冊答案