【題目】已知:如圖,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,與CD相交于點(diǎn)F,H是BC邊的中點(diǎn),連結(jié)DH與BE相交于點(diǎn)G.
(1)求證:BF=AC;
(2)求證:CE=BF;
(3)CE與BG的大小關(guān)系如何?試證明你的結(jié)論.
【答案】(1)證明見解析;(2)證明見解析;(3)CE<BG.證明見解析.
【解析】
(1)證明△BDF≌△CDA,得到BF=AC;(2)由(1)問(wèn)可知AC=BF,所以CE=AE=BF;(3) BG=CG,CG在△EGC中,CE<CG.
解:(1)證明:因?yàn)?/span>CD⊥AB, ∠ABC=45°,
所以△BCD是等腰直角三角形.
所以BD=CD.
在Rt△DFB和Rt△DAC中,
因?yàn)椤?/span>DBF=90°-∠BFD, ∠DCA=90°-∠EFC,
又∠BFD=∠EFC,
所以∠DBF=∠DCA.
又因?yàn)椤?/span>BDF=∠CDA=90°,BD=CD,.
所以Rt△DFB≌Rt△DAC.
所以BF=AC.
(2)證明:在Rt△BEA和Rt△BEC中,
因?yàn)?/span>BE平分∠ABC,
所以∠ABE=∠CBE.
又因?yàn)?/span>BE=BE, ∠BEA=∠BEC=90°,
所以Rt△BEA≌Rt△BEC.
所以CE=AE=AC.
又由(1),知BF=AC,
所以CE=AC=BF.
(3)CE<BG.證明:連接CG,
因?yàn)?/span>△BCD是等腰直角三角形,
所以BD=CD,
又H是BC邊的中點(diǎn),
所以DH垂直平分BC.
所以BG=CG,
在Rt△CEG中,
因?yàn)?/span>CG是斜邊,CE是直角邊,
所以CE<CG,即CE<BG.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠生產(chǎn)部門為了解本部門工人的生產(chǎn)能力情況,進(jìn)行了抽樣調(diào)查.該部門隨機(jī)抽取了30名工人某天每人加工零件的個(gè)數(shù),數(shù)據(jù)如下:
20 | 21 | 19 | 16 | 27 | 18 | 31 | 29 | 21 | 22 |
25 | 20 | 19 | 22 | 35 | 33 | 19 | 17 | 18 | 29 |
18 | 35 | 22 | 15 | 18 | 18 | 31 | 31 | 19 | 22 |
整理上面數(shù)據(jù),得到條形統(tǒng)計(jì)圖:
樣本數(shù)據(jù)的平均數(shù)、眾數(shù)、中位數(shù)如下表所示:
統(tǒng)計(jì)量 | 平均數(shù) | 眾數(shù) | 中位數(shù) |
數(shù)值 | 23 | m | 21 |
根據(jù)以上信息,解答下列問(wèn)題:
(1)上表中眾數(shù)m的值為 ;
(2)為調(diào)動(dòng)工人的積極性,該部門根據(jù)工人每天加工零件的個(gè)數(shù)制定了獎(jiǎng)勵(lì)標(biāo)準(zhǔn),凡達(dá)到或超過(guò)這個(gè)標(biāo)準(zhǔn)的工人將獲得獎(jiǎng)勵(lì).如果想讓一半左右的工人能獲獎(jiǎng),應(yīng)根據(jù) 來(lái)確定獎(jiǎng)勵(lì)標(biāo)準(zhǔn)比較合適.(填“平均數(shù)”、“眾數(shù)”或“中位數(shù)”)
(3)該部門規(guī)定:每天加工零件的個(gè)數(shù)達(dá)到或超過(guò)25個(gè)的工人為生產(chǎn)能手.若該部門有300名工人,試估計(jì)該部門生產(chǎn)能手的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,從點(diǎn)A(0,4)出發(fā)的一束光,經(jīng)x軸反射,過(guò)點(diǎn)C(6,4),求這束光從點(diǎn)A到點(diǎn)C所經(jīng)過(guò)的路徑長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】 “賞中華詩(shī)詞,尋文化基因,品生活之美”,某校舉辦了首屆“中國(guó)詩(shī)詞大會(huì)”,經(jīng)選拔后有50名學(xué)生參加決賽,這50名學(xué)生同時(shí)默寫50首古詩(shī)詞,若每正確默寫出一首古詩(shī)詞得2分,根據(jù)測(cè)試成績(jī)繪制出部分頻數(shù)分布表和部分頻數(shù)分布直方圖如圖表:
請(qǐng)結(jié)合圖表完成下列各題:
(1)①表中a的值為 ,中位數(shù)在第 組;
②頻數(shù)分布直方圖補(bǔ)充完整;
(2)若測(cè)試成績(jī)不低于80分為優(yōu)秀,則本次測(cè)試的優(yōu)秀率是多少?
(3)第5組10名同學(xué)中,有4名男同學(xué),現(xiàn)將這10名同學(xué)平均分成兩組進(jìn)行對(duì)抗練習(xí),且4名男同學(xué)每組分兩人,求小明與小強(qiáng)兩名男同學(xué)能分在同一組的概率.
組別 | 成績(jī)x分 | 頻數(shù)(人數(shù)) |
第1組 | 50≤x<60 | 6 |
第2組 | 60≤x<70 | 8 |
第3組 | 70≤x<80 | 14 |
第4組 | 80≤x<90 | a |
第5組 | 90≤x<100 | 10 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AB=AC=5,AB的垂直平分線DE分別交AB,AC于E,D.
(1)若△BCD的周長(zhǎng)為8,求BC的長(zhǎng);
(2)若BC=4,求△BCD的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校準(zhǔn)備印制一-批證書,現(xiàn)有兩個(gè)印刷廠可供選擇:
甲廠收費(fèi)方式:收制版費(fèi)1000元,每本印刷費(fèi)0.5元;
乙廠收費(fèi)方式:不超過(guò)2000本時(shí),每本收印刷費(fèi)1.5元;超過(guò)2000本時(shí),超過(guò)的部分每本收印刷費(fèi)0.25元,若該校印刷證書本.
(1)若不超過(guò)2000時(shí),甲廠的收費(fèi)為 元,乙廠的收費(fèi)為 元;
(2)若超過(guò)2000時(shí),甲廠的收費(fèi)為 元, 乙廠的收費(fèi)為 元;
(3)當(dāng)印制證書8000本時(shí)應(yīng)該選擇哪個(gè)印刷廠更節(jié)省費(fèi)用?節(jié)省多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y1=kx+b(k≠0)的圖象與反比例函數(shù)y2=(m≠0,x>0)的圖象交于第一象限內(nèi)的A、B兩點(diǎn),過(guò)點(diǎn)A作AC⊥x軸于點(diǎn)C,AC=3,點(diǎn)B的坐標(biāo)為(2,6)
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)求△AOB的面積;
(3)根據(jù)圖象,請(qǐng)直接寫出y1<y2時(shí)x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如下表,從左到右在每個(gè)小格子中都填入一個(gè)整數(shù),使得其中任意三個(gè)相鄰格子中所填整數(shù)之和都相等,則第2019個(gè)格子中的數(shù)為__________.
3 | -1 | 2 | … |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC的內(nèi)接三角形,P為BC延長(zhǎng)線上一點(diǎn),∠PAC=∠B,AD為⊙O的直徑,過(guò)C作CG⊥AD于E,交AB于F,交⊙O于G。
(1)判斷直線PA與⊙O的位置關(guān)系,并說(shuō)明理由;
(2)求證:AG2=AF·AB;
(3)若⊙O的直徑為10,AC=2,AB=4,求△AFG的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com