【題目】已知平面直角坐標(biāo)系中有一點(diǎn).

(1)點(diǎn)My軸的距離為1時(shí),M的坐標(biāo)?

(2)點(diǎn)MN//x軸時(shí),M的坐標(biāo)?

【答案】(1) (﹣1,2)(1,3)(2) (﹣7,﹣1)

【解析】分析:1)根據(jù)題意可知2m-3的絕對(duì)值等于1從而可以得到m的值,進(jìn)而得到件M的坐標(biāo)

2)根據(jù)題意可知點(diǎn)M的縱坐標(biāo)等于點(diǎn)N的縱坐標(biāo),從而可以得到m的值進(jìn)而得到件M的坐標(biāo).

詳解:((1)∵點(diǎn)M2m-3,m+1),點(diǎn)My軸的距離為1,

∴|2m-3|=1,解得m= 1m=2,

當(dāng)m=1時(shí),點(diǎn)M的坐標(biāo)為(﹣1,2),

當(dāng)m=2時(shí)點(diǎn)M的坐標(biāo)為(1,3);

綜上所述點(diǎn)M的坐標(biāo)為(﹣1,2)或(1,3);

2)∵點(diǎn)M2m-3,m+1),點(diǎn)N5,﹣1)且MNx

m+1=﹣1,解得m=﹣2

故點(diǎn)M的坐標(biāo)為(﹣7,﹣1).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,二次函數(shù)y=mx2+(m2﹣m)x﹣2m+1的圖象與x軸交于點(diǎn)A、B,與y軸交于點(diǎn)C,頂點(diǎn)D的橫坐標(biāo)為1.

(1)求二次函數(shù)的表達(dá)式及A、B的坐標(biāo);
(2)若P(0,t)(t<﹣1)是y軸上一點(diǎn),Q(﹣5,0),將點(diǎn)Q繞著點(diǎn)P順時(shí)針?lè)较蛐D(zhuǎn)90°得到點(diǎn)E.當(dāng)點(diǎn)E恰好在該二次函數(shù)的圖象上時(shí),求t的值;
(3)在(2)的條件下,連接AD、AE.若M是該二次函數(shù)圖象上一點(diǎn),且∠DAE=∠MCB,求點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,∠ABC=90°,點(diǎn)D是BC邊的中點(diǎn),分別以B、C為圓心,大于線段BC長(zhǎng)度一半的長(zhǎng)為半徑畫(huà)弧,兩弧在直線BC上方的交點(diǎn)為P,直線PD交AC于點(diǎn)E,連接BE,則下列結(jié)論:①BE= AC;②∠A=∠EBA;③EB平分∠AED;④ED= AB中,一定正確的是(
A.①②③
B.①②④
C.①③④
D.②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】平面直角坐標(biāo)系中,拋物線y=ax2+bx+2過(guò)點(diǎn)A(﹣3,0)、B (1,0),與y軸交于點(diǎn)C,拋物線的頂點(diǎn)為D,點(diǎn)G在拋物線上且其縱坐標(biāo)為2.
(1)a= , b= , D().
(2)P是線段AB上一動(dòng)點(diǎn)(點(diǎn)P不與A、B重合),點(diǎn)P作x軸的垂線交拋物線于點(diǎn)E.
①若PE=PB,試求E點(diǎn)坐標(biāo);
②在①的條件下,PE、DG交于點(diǎn)M,在線段PE上是否存一點(diǎn)N,使得△DMN與△DCO相似?若存在,試求出相應(yīng)點(diǎn)的坐標(biāo);
③在①的條件下,點(diǎn)F是坐標(biāo)軸上一點(diǎn),且點(diǎn)F到EC、ED的距離相等,試直接寫(xiě)出EF的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】雷達(dá)二維平面定位的主要原理是:測(cè)量目標(biāo)的兩個(gè)信息距離和角度,目標(biāo)的表示方法為,其中,m表示目標(biāo)與探測(cè)器的距離;表示以正東為始邊,逆時(shí)針旋轉(zhuǎn)后的角度.如圖,雷達(dá)探測(cè)器顯示在點(diǎn)A,B,C處有目標(biāo)出現(xiàn),其中,目標(biāo)A的位置表示為,目標(biāo)C的位置表示為.用這種方法表示目標(biāo)B的位置,正確的是(

A. (-4, 150°) B. (4, 150°) C. (-2, 150°) D. (2, 150°)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下表列出了國(guó)外幾個(gè)城市與首都北京的時(shí)差(帶正號(hào)的表示同一時(shí)刻比北京時(shí)間早的時(shí)數(shù)),如北京時(shí)間的上午1000時(shí),東京時(shí)間的10點(diǎn)已過(guò)去了1小時(shí)現(xiàn)在已是10+1=1100

1)如果現(xiàn)在是北京時(shí)間800,那么現(xiàn)在的紐約時(shí)間是多少;

2)此時(shí)(北京時(shí)間800小明想給遠(yuǎn)在巴黎姑媽打電話,你認(rèn)為合適嗎?為什么?

3)如果現(xiàn)在是芝加哥時(shí)間上午600,那么現(xiàn)在北京時(shí)間是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】實(shí)驗(yàn)證明,平面鏡反射光線的規(guī)律是:射到平面鏡上的光線和被反射出的光線與平面鏡所夾的銳角相等.

(1)如圖,一束光線射到平面鏡上,被反射到平面鏡上,又被反射,若被反射出的光線與光線平行,且,則_________,________.

(2)在(1)中,若,則_______;若,則________;

(3)由(1)、(2),請(qǐng)你猜想:當(dāng)兩平面鏡、的夾角________時(shí),可以使任何射到平面鏡上的光線,經(jīng)過(guò)平面鏡、的兩次反射后,入射光線與反射光線平行.請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知直線ABDF,D+B=180°

1)求證:DEBC;

2)如果∠AMD=75°,求∠AGC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線AB、CD相交于點(diǎn)O,OE平分∠BOD,OF平分∠COE.

(1)若∠AOC=76°,求∠BOF的度數(shù);

(2)若∠BOF=36°,求∠AOC的度數(shù);

(3)若|∠AOC﹣BOF|=α°,請(qǐng)直接寫(xiě)出∠AOC和∠BOF的度數(shù).(用含的代數(shù)式表示)

查看答案和解析>>

同步練習(xí)冊(cè)答案