【題目】甲、乙兩名隊員參加射擊訓(xùn)練,每人射擊10次;根據(jù)兩人成績的信息,繪制了統(tǒng)計圖,如圖所示:

下面有四個推斷:

甲和乙成績的眾數(shù)不相同甲和乙成績的中位數(shù)相同

甲和乙成績的平均數(shù)不相同甲的成績比乙的成績穩(wěn)定

其中合理的是(

A.①③B.①④C.②③D.②④

【答案】B

【解析】

根據(jù)眾數(shù)、中位數(shù)、平均數(shù)以及方差的計算公式及求解方法分別求出各個量,然后進行分析即可得.

甲成績的眾數(shù)是7,乙成績的眾數(shù)是8,所以它們的眾數(shù)不相同,故正確;

甲成績的中位數(shù)是7,乙成績的中位數(shù)是7.5,所以它們的中位數(shù)不相同,故錯誤;

甲成績的平均數(shù)是7,乙成績的平均數(shù)是7,所以它們的平均數(shù)相同,故錯誤;

,

,

從方差看甲的成績比乙成績穩(wěn)定,故正確;

綜上所述,合理的是①④

故選:B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,三張黑桃撲克牌,背面完全相同將三張撲克牌背面朝上,洗勻后放在桌面上甲,乙兩人進行摸牌游戲,甲先從中隨機抽取一張,記下數(shù)字再放回洗勻,乙再從中隨機抽取一張.

1)甲抽到黑桃,這一事件是   事件(填不可能,隨機必然);

2)利用樹狀圖或列表的方法,求甲乙兩人抽到同一張撲克牌的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在矩形ABCD中,點E在邊AD上,點F在邊BC上,且AE=CF,作EGFH,分別與對角線BD交于點G、H,連接EH,FG

1)求證:△BFH≌△DEG;

2)連接DF,若BF=DF,則四邊形EGFH是什么特殊四邊形?證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=AC,以AB為直徑的O分別交BC,AC于點D,E,連結(jié)EB,交OD于點F

1)求證:ODBE

2)若DE=,AB=6,求AE的長.

3)若CDE的面積是OBF面積的,求線段BCAC長度之間的等量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面材料:

在數(shù)學(xué)課上,老師提出如下問題:

已知:如圖,四邊形是平行四邊形.求作:菱形,使點分別在上.

小凱的作法如下:

(1)連接;

(2)的垂直平分線分別交;

(3)連接

所以四邊形是菱形.

老師說:小凱的作法正確.

請回答:在小凱的作法中,判定四邊形是菱形的依據(jù)是__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有這樣一個問題:探究函數(shù)的圖象與性質(zhì).

下面是小東的探究過程,請補充完成:

1)函數(shù)的自變量x的取值范圍是

2)在平面直角坐標(biāo)系xOy中描出了圖象上的一些點,請你畫出函數(shù)的圖象;

下表是yx的幾組對應(yīng)值.

x

2

1

0

1

1.4

2.4

2.5

3

4

5

y

3.25

2.33

1.50

1

1.27

3.9

3.5

3

m

4.33

3)求m的值;

4)根據(jù)圖象寫出此函數(shù)的一條性質(zhì).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為落實美麗撫順的工作部署,市政府計劃對城區(qū)道路進行了改造,現(xiàn)安排甲、乙兩個工程隊完成.已知甲隊的工作效率是乙隊工作效率的倍,甲隊改造360米的道路比乙隊改造同樣長的道路少用3天.

(1)甲、乙兩工程隊每天能改造道路的長度分別是多少米?

(2)若甲隊工作一天需付費用7萬元,乙隊工作一天需付費用5萬元,如需改造的道路全長1200米,改造總費用不超過145萬元,至少安排甲隊工作多少天?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校組織同學(xué)到離校15千米的社會實踐基地開展活動.一部分同學(xué)騎自行車前往,另一部分同學(xué)在騎自行車的同學(xué)出發(fā)小時后,乘汽車沿相同路線行進,結(jié)果騎自行車的與乘汽車的同學(xué)同時到達目的地.已知汽車速度是自行車速度的3倍,求自行車的速度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知菱形ABCD,點EAB的中點,AFBC于點F,聯(lián)結(jié)EF、EDDF,DEAF于點G,且AE2EGED

(1)求證:DEEF;

(2)求證:BC22DFBF

查看答案和解析>>

同步練習(xí)冊答案