【題目】如圖,△ABC中,∠BAC=90°,AB=AC=1,點(diǎn)D是BC上一個動點(diǎn)(不與B、C重合),在AC上取E點(diǎn),使∠ADE=45°.
(1)試判斷△ABD與△DCE是否相似并說明理由;
(2)設(shè)BD=x,AE=y,求y關(guān)于x的函數(shù)關(guān)系式;并指出當(dāng)點(diǎn)D在BC上運(yùn)動(不與B、C重合)時,AE是否存在最小值?若存在,求出最小值;若不存在,說明理由;
(3)當(dāng)△ADE是等腰三角形時,求AE的長.
【答案】(1)△ABD與△DCE相似,理由見;(2)x=時,y有最小值,最小值為;(3)當(dāng)△ADE是等腰三角形時,AE的長為2﹣或
【解析】
(1)根據(jù)等腰直角三角形的性質(zhì)及三角形內(nèi)角與外角的關(guān)系,易證△ABD∽△DCE.
(2)由△ABD∽△DCE,對應(yīng)邊成比例及等腰直角三角形的性質(zhì)可求出y與x的函數(shù)關(guān)系式,根據(jù)函數(shù)圖象的頂點(diǎn)坐標(biāo)可求出其最小值.
(3)當(dāng)△ADE是等腰三角形時,因?yàn)槿切蔚难偷撞幻鞔_,所以應(yīng)分AD=DE,AE=DE,AD=AE三種情況討論.
解:(1)△ABD與△DCE相似
∵∠BAC=90°,AB=AC
∴∠B=∠C=∠ADE=45°
∵∠ADC=∠B+∠BAD=∠ADE+∠CDE
∴∠BAD=∠CDE
∴△ABD∽△DCE;
(2)由(1)得△ABD∽△DCE
∴,
∵∠BAC=90°,AB=AC=1,
∴BC=,DC=﹣x,EC=1﹣y
∴,y=x2﹣x+1=(x﹣)2+,
當(dāng)x=時,y有最小值,最小值為;
(3)當(dāng)AD=DE時,△ABD≌△CDE,
∴BD=CE,
∴x=1﹣y,即x﹣x2=x,
∵x≠0,
∴x=﹣1
∴AE=1﹣x=2﹣,
當(dāng)AE=DE時,DE⊥AC,此時D是BC中點(diǎn),E也是AC的中點(diǎn),
所以,AE=;
當(dāng)AD=AE時,∠DAE=90°,D與B重合,不合題意;
綜上,當(dāng)△ADE是等腰三角形時,AE的長為2﹣或.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小穎和小紅兩位同學(xué)在學(xué)習(xí)“概率”時,做投擲骰子(質(zhì)地均勻的正方體)實(shí)驗(yàn),他們共做了次實(shí)驗(yàn),實(shí)驗(yàn)的結(jié)果如下:
朝上的點(diǎn)數(shù) | ||||||
出現(xiàn)的次數(shù) |
計(jì)算“點(diǎn)朝上”的頻率和“點(diǎn)朝上”的頻率.
小穎說:“根據(jù)實(shí)驗(yàn),一次實(shí)驗(yàn)中出現(xiàn)點(diǎn)朝上的概率最大”;小紅說:“如果投擲次,那么出現(xiàn)點(diǎn)朝上的次數(shù)正好是次.”小穎和小紅的說法正確嗎?為什么?
小穎和小紅各投擲一枚骰子,用列表或畫樹狀圖的方法求出兩枚骰子朝上的點(diǎn)數(shù)之和為的倍數(shù)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在電線桿上的C處引拉線CE、CF固定電線桿,拉線CE和地面成60°角,在離電線桿6米的B處安置測角儀,在A處測得電線桿上C處的仰角為30°,已知測角儀高AB為1.5米,求拉線CE的長(結(jié)果保留根號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】經(jīng)過原點(diǎn)的拋物線與x軸交于另一點(diǎn),該點(diǎn)到原點(diǎn)的距離為2,且該拋物線經(jīng)過(3,3)點(diǎn),則該拋物線的解析式為____ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店按進(jìn)貨價每件6元購進(jìn)一批貨,零售價為8元時,可以賣出100件,如果零售價高于8元,那么一件也賣不出去,零售價從8元每降低0.1元,可以多賣出10件.設(shè)零售價定為x元(6≤x≤8).
(1)這時比零售為8元可以多賣出幾件?
(2)這時可以賣出多少件?
(3)這時所獲利潤y(元)與零售價x(元)的關(guān)系式怎樣?
(4)為零售價定為多少時,所獲利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,AB∥DE,AC∥DF,AC=DF下列條件中,不能判斷△ABC≌△DEF的是( 。
A. AB=DE B. ∠B=∠E C. EF=BC D. EF∥BC
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(7分)某中學(xué)1000名學(xué)生參加了”環(huán)保知識競賽“,為了了解本次競賽成績情況,從中抽取了部分學(xué)生的成績(得分取整數(shù),滿分為100分)作為樣本進(jìn)行統(tǒng)計(jì),并制作了如圖頻數(shù)分布表和頻數(shù)分布直方圖(不完整且局部污損,其中“■”表示被污損的數(shù)據(jù)).請解答下列問題:
成績分組 | 頻數(shù) | 頻率 |
50≤x<60 | 8 | 0.16 |
60≤x<70 | 12 | a |
70≤x<80 | ■ | 0.5 |
80≤x<90 | 3 | 0.06 |
90≤x≤100 | b | c |
合計(jì) | ■ | 1 |
(1)寫出a,b,c的值;
(2)請估計(jì)這1000名學(xué)生中有多少人的競賽成績不低于70分;
(3)在選取的樣本中,從競賽成績是80分以上(含80分)的同學(xué)中隨機(jī)抽取兩名同學(xué)參加環(huán)保知識宣傳活動,求所抽取的2名同學(xué)來自同一組的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ ABC中,∠ ABC=90°,AB=BC,D在邊 AC上,AE┴ BD于 E.
(1) 如圖 1,作 CF⊥ BD于 F,求證:CF-AE=EF;
(2) 如圖 2,若 BC=CD,求證:BD=2AE ;
(3) 如圖3,作 BM ⊥BE,且 BM=BE,AE=2,EN=4,連接 CM交 BE于 N,請直接寫出△BCM的面積為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,AC與BD交于點(diǎn)M,點(diǎn)F在AD上,AF=6cm,BF=12cm,∠FBM=∠CBM,點(diǎn)E是BC的中點(diǎn),若點(diǎn)P以1cm/s秒的速度從點(diǎn)A出發(fā),沿AD向點(diǎn)F運(yùn)動;點(diǎn)Q同時以2cm/秒的速度從點(diǎn)C出發(fā),沿CB向點(diǎn)B運(yùn)動,點(diǎn)P運(yùn)動到F點(diǎn)時停止運(yùn)動,點(diǎn)Q也同時停止運(yùn)動,當(dāng)點(diǎn)P運(yùn)動__秒時,以P、Q、E、F為頂點(diǎn)的四邊形是平行四邊形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com