【題目】如圖,在數(shù)軸上的A1,A2,A3,A4,……A20,這20個點所表示的數(shù)分別是a1,a2,a3a4,……a20.若A1A2A2A3=……=A19A20,且a320,|a1a4|12

1)線段A3A4的長度=   a2   ;

2)若|a1x|a2+a4,求x的值;

3)線段MNO點出發(fā)向右運動,當線段MN與線段A1A20開始有重疊部分到完全沒有重疊部分經(jīng)歷了9秒.若線段MN5,求線段MN的運動速度.

【答案】14,16;(2x=﹣28x52;(3)線段MN的運動速度為9單位長度/秒.

【解析】

1)由A1A2A2A3……A19A20結(jié)合|a1a4|12可求出A3A4的值,再由a320可求出a216

2)由(1)可得出a112,a216a424,結(jié)合|a1x|a2+a4可得出關(guān)于x的含絕對值符號的一元一次方程,解之即可得出結(jié)論;

3)由(1)可得出A1A2019A3A476,設(shè)線段MN的運動速度為v單位/秒,根據(jù)路程=速度×時間(類似火車過橋問題),即可得出關(guān)于v的一元一次方程,解之即可得出結(jié)論.

解:(1)∵A1A2A2A3……A19A20,|a1a4|12,

3A3A412

A3A44

又∵a320,

a2a3416

故答案為:416

2)由(1)可得:a112,a216a424,

a2+a440

又∵|a1x|a2+a4,

|12x|40,

12x4012x=﹣40,

解得:x=﹣28x52

3)根據(jù)題意可得:A1A2019A3A476

設(shè)線段MN的運動速度為v單位/秒,

依題意,得:9v76+5,

解得:v9

答:線段MN的運動速度為9單位長度/秒.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,把一張長方形卡片ABCD放在每格寬度為12mm的橫格紙中,恰好四個頂點都在橫格線上,已知α=36°,求長方形卡片的周長.(精確到1mm)(參考數(shù)據(jù):sin36°0.60,cos36°0.80,tan36°0.75)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在四邊形ABCD中,AB3CD,ABCDCEDA,DFCB

1)求證:四邊形CDEF是平行四邊形;

2)填空:

當四邊形ABCD滿足條件   時(僅需一個條件),四邊形CDEF是矩形;

當四邊形ABCD滿足條件   時(僅需一個條件),四邊形CDEF是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個立方體的每個面上都標有數(shù)字1、23、45、6,根據(jù)圖中該立方體AB、C三種狀態(tài)所顯示的數(shù)字,可推出?處的數(shù)字是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知∠AOB110°,∠COD40°,OE平分∠AOC,OF平分∠BOD

1)如圖1,當OB、OC重合時,求∠AOE﹣∠BOF的值;

2)如圖2,當∠COD從圖1所示位置繞點O以每秒3°的速度順時針旋轉(zhuǎn)t秒(0t10),在旋轉(zhuǎn)過程中∠AOE﹣∠BOF的值是否會因t的變化而變化?若不發(fā)生變化,請求出該定值;若發(fā)生變化,請說明理由.

3)在(2)的條件下,當∠COF14°時,t   秒.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,AM是△ABC的中線,D是線段AM的中點,AMAC,AEBC.求證:四邊形EBCA是等腰梯形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,正比例函數(shù)y=x的圖象與一次函數(shù)y=kx﹣k的圖象的交點坐標為A(m,2).

(1)求m的值和一次函數(shù)的解析式;

(2)設(shè)一次函數(shù)y=kx﹣k的圖象與y軸交于點B,求△AOB的面積;

(3)直接寫出使函數(shù)y=kx﹣k的值大于函數(shù)y=x的值的自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,某辦公大樓正前方有一根高度是15米的旗桿ED,從辦公大樓頂端A測得旗桿頂端E的俯角α是45°,旗桿低端D到大樓前梯砍底邊的距離DC是20米,梯坎坡長BC是12米,梯坎坡度i=1:,則大樓AB的高度為_________米.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】四邊形 ABCD 的對角線交于點 E,且 AEEC,BEED,以 AD 為直徑的半圓過點 E,圓心 O

1)如圖①,求證:四邊形 ABCD 為菱形;

2)如圖②,若 BC 的延長線與半圓相切于點 F,且直徑 AD6,求AE 的長.

查看答案和解析>>

同步練習冊答案