(2003•桂林)如圖,AB是⊙O的直徑,過圓上一點(diǎn)D作⊙O的切線DE,與過點(diǎn)A的直線垂直于E,弦BD的延長線與直線AE交于C點(diǎn).
(1)求證:點(diǎn)D為BC的中點(diǎn);
(2)設(shè)直線EA與⊙O的另一交點(diǎn)為F,求證:CA2-AF2=4CE•EA;
(3)若弧AD=弧DB,⊙O的半徑為r.求由線段DE,AE和弧AD所圍成的陰影部分的面積.

【答案】分析:(1)連接OD、ED為⊙O切線,由切線的性質(zhì)知:OD⊥DE;根據(jù)垂直于同一直線的兩條直線平行知:OD∥AC;由于O為AB中點(diǎn),則點(diǎn)D為BC中點(diǎn).
(2)連接BF,AB為⊙O直徑,根據(jù)直徑對的圓周角是直角知,∠CFB=∠CED=90°,根據(jù)垂直于同一直線的兩條直線平行知
ED∥BF由平行線的性質(zhì)知,由于點(diǎn)D為BC中點(diǎn),則點(diǎn)E為CF中點(diǎn),所以CA2-AF2=(CA-AF)(CA+AF)=(CE+AE-EF+AE)•CF=2AE•CF,將CF=2CE代入即可得出所求的結(jié)論.
(3)由于則弧AD是半圓ADB的三分之一,有∠AOD=180°÷3=60°;連接DA,可知等腰三角形△OAD為等邊三角形,則有OD=AD=r;在Rt△DEA中,由弦切角定理知:∠EDA=∠B=30°,可求得EA=r,ED=r,則有S陰影=S梯形AODE-S扇形AOD,從而可求得陰影部分的面積.
解答:(1)證明:連接OD,
∵ED為⊙O切線,∴OD⊥DE;
∵DE⊥AC,∴OD∥AC;
∵O為AB中點(diǎn),
∴D為BC中點(diǎn);

(2)證明:連接BF,
∵AB為⊙O直徑,
∴∠CFB=∠CED=90°;
∴ED∥BF;
∵D為BC中點(diǎn),
∴E為CF中點(diǎn);
∴CA2-AF2=(CA-AF)(CA+AF)
=(CE+AE-EF+AE)•CF=2AE•CF;
∴CA2-AF2=4CE•AE;

(3)解:∵,
∴∠AOD=60°;
連接DA,可知△OAD為等邊三角形,
∴OD=AD=r,
在Rt△DEA中,∠EDA=30°,
∴EA=r,ED=r;
∴S陰影=S梯形AODE-S扇形AOD=
=
點(diǎn)評:本題考查了切線的性質(zhì)、平行線的判定和性質(zhì)、直角三角形的性質(zhì)、平方差公式、圓周角定理、等邊三角形的判定和性質(zhì)以及梯形和扇形的面積計算方法等知識.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2003年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(05)(解析版) 題型:解答題

(2003•桂林)如圖,AC=6,B是AC上的一點(diǎn),分別以AB、BC、AC為直徑作半圓,過點(diǎn)B作BD⊥AC,交半圓于點(diǎn)D,設(shè)以AB為直徑的圓的圓心為O1,半徑為r1;以BC為直徑的圓的圓心為O2,半徑為r2
(1)求證:BD2=4r1r2;
(2)以AC所在的直線為x軸,BD所在直線為y軸建立直角坐標(biāo)系,如果r1:r2=1:2,求經(jīng)過A、D、C三點(diǎn)的拋物線的函數(shù)解析式;
(3)如果(2)所確定的拋物線與以AC為直徑的半圓交于另一點(diǎn)E,已知P為上的動點(diǎn)(P與A、E點(diǎn)不重合),連接弦CP交EO2于F點(diǎn),設(shè)CF=x,CP=y,求y與x的函數(shù)解析式,并確定自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2003年廣西桂林市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2003•桂林)如圖,AC=6,B是AC上的一點(diǎn),分別以AB、BC、AC為直徑作半圓,過點(diǎn)B作BD⊥AC,交半圓于點(diǎn)D,設(shè)以AB為直徑的圓的圓心為O1,半徑為r1;以BC為直徑的圓的圓心為O2,半徑為r2
(1)求證:BD2=4r1r2;
(2)以AC所在的直線為x軸,BD所在直線為y軸建立直角坐標(biāo)系,如果r1:r2=1:2,求經(jīng)過A、D、C三點(diǎn)的拋物線的函數(shù)解析式;
(3)如果(2)所確定的拋物線與以AC為直徑的半圓交于另一點(diǎn)E,已知P為上的動點(diǎn)(P與A、E點(diǎn)不重合),連接弦CP交EO2于F點(diǎn),設(shè)CF=x,CP=y,求y與x的函數(shù)解析式,并確定自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2003年全國中考數(shù)學(xué)試題匯編《銳角三角函數(shù)》(02)(解析版) 題型:填空題

(2003•桂林)如圖,在Rt△ABC中,∠C=90°,AB=10,AC=6,那么tanB=   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2003年廣西桂林市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2003•桂林)如圖,順次連接矩形ABCD各邊中點(diǎn),得到菱形EFGH.這個由矩形和菱形所組成的圖形( )

A.是軸對稱圖形但不是中心對稱圖形
B.是中心對稱圖形但不是軸對稱圖形
C.既是軸對稱圖形又是中心對稱圖形
D.沒有對稱性

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2003年廣西桂林市中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2003•桂林)如圖,在⊙O中,A、B、C三點(diǎn)在圓上,且∠CBD=60°,那么∠AOC=    度.

查看答案和解析>>

同步練習(xí)冊答案