【題目】(1)如圖1是由大小相同的小立方塊搭成的幾何體,請(qǐng)?jiān)趫D2的方格中畫出從上面和左面看到的該幾何體的形狀圖.(只需用2B鉛筆將虛線化為實(shí)線)

(2)若要用大小相同的小立方塊搭一個(gè)幾何體,使得它從上面和左面看到的形狀圖與你在圖2方格中所畫的形狀圖相同,則搭這樣的一個(gè)幾何體最多需要   個(gè)小立方塊.

【答案】(1)詳見解析;(2)9

【解析】

(1)從上面看得到從左往右4列正方形的個(gè)數(shù)依次為1,2,1,1,依此畫出圖形即可;從左面看得到從左往右2列正方形的個(gè)數(shù)依次為2,1;依此畫出圖形即可;
(2)由俯視圖易得最底層小立方塊的個(gè)數(shù),由左視圖找到其余層數(shù)里最多個(gè)數(shù)相加即可.

解:(1)如圖所示:

(2)搭這樣的一個(gè)幾何體最大需要5+4=9個(gè)小立方塊.

故答案為:9.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,MN分別是ADBC的中點(diǎn),EF分別是線段BM,CM的中點(diǎn),若AB=8,AD=12,則四邊形ENFM的周長(zhǎng)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知OE是∠AOC的角平分線,OD是∠BOC的角平分線.

(1)若∠AOC=120°,∠BOC=30°,求∠DOE的度數(shù);

(2)若∠AOB=90°,∠BOC=α,求∠DOE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是 ( )

A.凌晨氣溫為-5℃,中午氣溫比凌晨上升5℃,所以中午的氣溫為+5

B.-(-2)3 -23互為相反數(shù)

C.-5πxy3 的系數(shù)是-5,次數(shù)是4

D.--6=-(-6)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知數(shù)軸上點(diǎn)A表示的數(shù)為6,B是數(shù)軸上一點(diǎn),且AB=10,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以每秒6個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向左勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(t>0)秒,

(1)寫出數(shù)軸上點(diǎn)B所表示的數(shù)   ;

(2)點(diǎn)P所表示的數(shù)   ;(用含t的代數(shù)式表示);

(3)MAP的中點(diǎn),NPB的中點(diǎn),點(diǎn)P在運(yùn)動(dòng)的過程中,線段MN的長(zhǎng)度是否發(fā)生變化?若變化,說明理由;若不變,請(qǐng)你畫出圖形,并求出線段MN的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,ACBD相交于點(diǎn)O,點(diǎn)E、FBD上,且BEDF

AE、CF

1)求證△AOE≌△COF;

2)若ACEF,連接AF、CE,判斷四邊形AECF的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】觀察下列兩個(gè)等式:,給出定義如下:我們稱使等式abab+1的成立的一對(duì)有理數(shù)a,b共生有理數(shù)對(duì),記為(ab),如:數(shù)對(duì) , ,都是共生有理數(shù)對(duì)

1)數(shù)對(duì) , 中是共生有理數(shù)對(duì)的是   

2)若(m,n)是共生有理數(shù)對(duì),則(﹣n,﹣m   共生有理數(shù)對(duì)(填不是);

3)請(qǐng)?jiān)賹懗鲆粚?duì)符合條件的共生有理數(shù)對(duì)   ;(注意:不能與題目中已有的共生有理數(shù)對(duì)重復(fù))

4)若(a3)是共生有理數(shù)對(duì),求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)A(a,0)、B(b0)a≠0),a、b滿足b22bcc2=0

(1) 直接寫出ab的關(guān)系

(2) 如圖,將線段AB沿y軸的正方向平移m個(gè)單位得到線段PQ,點(diǎn)M在線段PQ上,QM=3MP,過MMFPAQA于點(diǎn)F,連接BM,BM平分∠PMF.若BM=,求m的值

(3) 如圖,點(diǎn)C在第一象限內(nèi),且滿足CA=OA,點(diǎn)Ex軸上,AE=BC,連接CE,取CE的中點(diǎn)N,連接NO.若∠BCA=α,求∠NOC(用含α的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD為菱形,E為對(duì)角線AC上的一個(gè)動(dòng)點(diǎn),連結(jié)DE并延長(zhǎng)交射線AB于點(diǎn)F,連結(jié)BE

1)求證:∠AFD=EBC;

2)若∠DAB=90°,當(dāng)BEF為等腰三角形時(shí),求∠EFB的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案