兩個大小相同且含角的三角板ABC和DEC如圖①擺放,使直角頂點重合. 將圖①中△DEC繞點C逆時針旋轉得到圖②,點F、G分別是CD、DE與AB的交點,點H是DE與AC的交點.
(1)不添加輔助線,寫出圖②中所有與△BCF全等的三角形;
(2)將圖②中的△DEC繞點C逆時針旋轉得△D1E1C,點F、G、H的對應點分別為F1、G1、H1,如圖③.探究線段D1F1與AH1之間的數(shù)量關系,并寫出推理過程;
(3)在(2)的條件下,若D1E1與CE交于點I,求證:G1I =CI.
(1)圖②中與△BCF全等的有△GDF、 △GAH 、△ECH.
(2)=
證明:∵∴△AF1C ≌△D1H1C.
∴ F1C= H1C, 又CD1=CA,
∴CD1- F1C ="CA-" H1C.即
(3)連結CG1.
在△D1G1F1和△AG1H1中,
∵,∴△D1G1F1≌△AG1H1.
∴G1F1=G1H1
又∵H1C=F1C,G1C=G1C,∴△CG1F1≌△CG1H1.
∴∠1=∠2.
∵∠B=60°,∠BCF="30°" ,∴∠BFC=90°.
又∵∠DCE=90°,∴∠BFC=∠DCE,
∴BA∥CE, ∴∠1=∠3, ∴∠2=∠3,
∴G1I="CI"
【解析】(1)觀察圖形,根據(jù)全等三角形的判定定理,即可得與△BCF全等的有△GDF、△GAH、△ECH;
(2)利用SAS即可判定△AF1C≌△D1H1C,則可得對應線段相等,即可求得D1F1=AH1;
(3)首先連接CG1,利用AAS即可證得△D1G1F1≌△AG1H1.然后可證得△CG1F1≌△CG1H1.又由平行線的性
質(zhì)即可求得答案.
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源:2011年初中畢業(yè)升學考試(四川內(nèi)江卷)數(shù)學 題型:解答題
(滿分10分)兩個大小相同且含角的三角板ABC和DEC如圖①擺放,使直角頂點重合. 將圖①中△DEC繞點C逆時針旋轉得到圖②,點F、G分別是CD、DE與AB的交點,點H是DE與AC的交點.
(1)不添加輔助線,寫出圖②中所有與△BCF全等的三角形;
(2)將圖②中的△DEC繞點C逆時針旋轉得△D1E1C,點F、G、H的對應點分別為F1、G1、H1,如圖③.探究線段D1F1與AH1之間的數(shù)量關系,并寫出推理過程;
(3)在(2)的條件下,若D1E1與CE交于點I,求證:G1I =CI.
查看答案和解析>>
科目:初中數(shù)學 來源:2012屆湖南省臨武縣楚江中學初中畢業(yè)學業(yè)考試模擬數(shù)學試卷9(帶解析) 題型:解答題
兩個大小相同且含角的三角板ABC和DEC如圖①擺放,使直角頂點重合. 將圖①中△DEC繞點C逆時針旋轉得到圖②,點F、G分別是CD、DE與AB的交點,點H是DE與AC的交點.
(1)不添加輔助線,寫出圖②中所有與△BCF全等的三角形;
(2)將圖②中的△DEC繞點C逆時針旋轉得△D1E1C,點F、G、H的對應點分別為F1、G1、H1,如圖③.探究線段D1F1與AH1之間的數(shù)量關系,并寫出推理過程;
(3)在(2)的條件下,若D1E1與CE交于點I,求證:G1I =CI.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
兩個大小相同且含角的三角板ABC和DEC如圖①擺放,使直角頂點重合. 將圖①中△DEC繞點C逆時針旋轉得到圖②,點F、G分別是CD、DE與AB的交點,點H是DE與AC的交點.
(1)不添加輔助線,寫出圖②中所有與△BCF全等的三角形;
(2)將圖②中的△DEC繞點C逆時針旋轉得△D1E1C,點F、G、H的對應點分別為F1、G1、H1 ,如圖③.探究線段D1F1與AH1之間的數(shù)量關系,并寫出推理過程;
(3)在(2)的條件下,若D1E1與CE交于點I,求證:G1I =CI.
D | |||
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com