【題目】如圖,分別以的直角邊和斜邊為邊向外作正方形和正方形,連結(jié)、.給出下列結(jié)論:

;

其中正確的是(

A.②③④B.①②③C.①②④D.①②③④

【答案】C

【解析】

利用SAS證明△AGB≌△ACE,即可判斷①;證明∠BNM=MAE=90,即可判斷②;假設(shè)③成立,利用勾股定理對(duì)等式變形證得=,而不一定相等,即可判斷③;利用勾股定理證得,從而證得結(jié)論④成立.

∵四邊形和四邊形都是正方形,

AC=AG,AB=AE,

∵∠CAG=BAE=90°,
∴∠CAG+BAC=BAE+BAC,即∠GAB=CAE
在△AGB和△ACE中,

,

∴△AGB≌△ACE(SAS)

GB=CE,故①正確;

設(shè)BACE相交于點(diǎn)M,

∵△AGB≌△ACE

∴∠GBA=CEA,

又∵∠BMN=EMA,

∴∠BNM=MAE=90

,故②正確;

設(shè)正方形和正方形的邊長(zhǎng)分別為,

為直角三角形,且為斜邊,

假設(shè)成立,

則有,

整理得:,即,

,即,

不一定相等,

∴假設(shè)不成立,故③不正確;

連接CG,BE,設(shè)BG、CE相交于N,

,

,

∵四邊形和四邊形都是正方形,

,,

,故④正確;

綜上,①②④正確,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)邊防局接到情報(bào),近海處有一可疑船只A正向公海方向行駛,邊防部迅速派出快艇B追趕(如圖1).圖2l1、l2分別表示兩船相対于海岸的距離s(海里)與追趕時(shí)間t(分)之間的關(guān)系.根據(jù)圖象問(wèn)答問(wèn)題:

1)①直線l1與直線l2   表示B到海岸的距離與追趕時(shí)間之間的關(guān)系

AB比較,   速度快;

③如果一直追下去,那么B   (填能或不能)追上A;

④可疑船只A速度是   海里/分,快艇B的速度是   海里/

2l1l2對(duì)應(yīng)的兩個(gè)一次函數(shù)表達(dá)式S1k1t+b1S2k2t+b2中,k1、k2的實(shí)際意義各是什么?并直接寫(xiě)出兩個(gè)具體表達(dá)式

315分鐘內(nèi)B能否追上A?為什么?

4)當(dāng)A逃離海岸12海里的公海時(shí),B將無(wú)法對(duì)其進(jìn)行檢查,照此速度,B能否在A逃入公海前將其攔截?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD的邊長(zhǎng)為4,M,N,P分別為AD,BC,CD的中點(diǎn).現(xiàn)從點(diǎn)P觀察線段AB,當(dāng)長(zhǎng)度為1的線段l(圖中的黑粗線)以每秒1個(gè)單位長(zhǎng)的速度沿線段MN從左向右運(yùn)動(dòng)時(shí),l將阻擋部分觀察視線,PAB區(qū)域內(nèi)形成盲區(qū).設(shè)l的左端點(diǎn)從M點(diǎn)開(kāi)始,運(yùn)動(dòng)時(shí)間為t(0t3).設(shè)PAB區(qū)域內(nèi)的盲區(qū)面積為y(平方單位).

(1)yt之間的函數(shù)關(guān)系式;

(2)請(qǐng)簡(jiǎn)單概括yt的變化而變化的情況.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,D、E、F分別為BC、AD、BE的中點(diǎn),若△BFD的面積為6,則 △ABC的面積等于_____________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】正方形網(wǎng)格中(網(wǎng)格中的每個(gè)小正方形邊長(zhǎng)是1),ABC的頂點(diǎn)均在格點(diǎn)上,請(qǐng)?jiān)谒o的直角坐標(biāo)系中解答下列問(wèn)題:

1試作出△ABCA為旋轉(zhuǎn)中心,沿順時(shí)針?lè)较蛐D(zhuǎn)90°后的圖形△AB1C1;點(diǎn)B1的坐標(biāo)為

2作△ABC關(guān)于原點(diǎn)O成中心對(duì)稱(chēng)的△A2B2C2;點(diǎn)B2的坐標(biāo)為 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,先對(duì)折矩形得折痕MN,再折紙使折線過(guò)點(diǎn)B,且使得AMN上,這時(shí)折線EBBC所成的角為(

A.30°B.45°C.60°D.75°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們規(guī)定:將一個(gè)平面圖形分成面積相等的兩部分的直線叫做該平面圖形的面線,面線被這個(gè)平面圖形截得的線段叫做該圖形的面徑(例如圓的直徑就是它的面徑).已知等邊三角形的邊長(zhǎng)為4,則它的面徑長(zhǎng)x的取值范圍是 _.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】附加題:(1)已知:如圖①,在中,OA=OBOC=OD,,求證:①AC=BD;②

2)如圖②,在中,若OA=OB,OC=OD,則ACBD間的等量關(guān)系式為 的大小為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,四邊形AOBC是矩形,點(diǎn)O0,0),點(diǎn)A5,0),點(diǎn)B0,3).以點(diǎn)A為中心,順時(shí)針旋轉(zhuǎn)矩形AOBC,得到矩形ADEF,點(diǎn)OBC的對(duì)應(yīng)點(diǎn)分別為D,E,F

1)如圖①,當(dāng)點(diǎn)D落在BC邊上時(shí),求點(diǎn)D的坐標(biāo);

2)如圖②,當(dāng)點(diǎn)D落在線段BE上時(shí),ADBC交于點(diǎn)H

①求證ADB≌△AOB;

②求點(diǎn)H的坐標(biāo).

3)記K為矩形AOBC對(duì)角線的交點(diǎn),SKDE的面積,求S的取值范圍(直接寫(xiě)出結(jié)果即可).

查看答案和解析>>

同步練習(xí)冊(cè)答案