【題目】如圖,在Rt△ABC中,∠ABC=90°,∠ACB=30°,AB=2cm,E、F分別是AB、AC的中點(diǎn),動(dòng)點(diǎn)P從點(diǎn)E出發(fā),沿EF方向勻速運(yùn)動(dòng),速度為1cm/s,同時(shí)動(dòng)點(diǎn)Q從點(diǎn)B出發(fā),沿BF方向勻速運(yùn)動(dòng),速度為2cm/s,連接PQ,設(shè)運(yùn)動(dòng)時(shí)間為ts(0<t<1),則當(dāng)t=___時(shí),△PQF為等腰三角形.
【答案】2﹣或.
【解析】
由勾股定理和含30°角的直角三角形的性質(zhì)先分別求出AC和BC,然后根據(jù)題意把PF和FQ表示出來(lái),當(dāng)△PQF為等腰三角形時(shí)分三種情況討論即可.
解:∵∠ABC=90°,∠ACB=30°,AB=2cm,
∴AC=2AB=4cm,BC==2,
∵E、F分別是AB、AC的中點(diǎn),
∴EF=BC=cm,BF=AC=2cm,
由題意得:EP=t,BQ=2t,
∴PF=﹣t,FQ=2﹣2t,
分三種情況:
①當(dāng)PF=FQ時(shí),如圖1,△PQF為等腰三角形.
則﹣t=2﹣2t,
t=2﹣ ;
②如圖2,當(dāng)PQ=FQ時(shí),△PQF為等腰三角形,過(guò)Q作QD⊥EF于D,
∴PF=2DF,
∵BF=CF,
∴∠FBC=∠C=30°,
∵E、F分別是AB、AC的中點(diǎn),
∴EF∥BC,
∴∠PFQ=∠FBC=30°,
∵FQ=2﹣2t,
∴DQ=FQ=1﹣t,
∴DF= (1﹣t),
∴PF=2DF=2(1﹣t),
∵EF=EP+PF= ,
∴t+2(1﹣t)= ,
t= ;
③因?yàn)楫?dāng)PF=PQ時(shí),∠PFQ=∠PQF=30°,
∴∠FPQ=120°,
而在P、Q運(yùn)動(dòng)過(guò)程中,∠FPQ最大為90°,所以此種情況不成立;
綜上,當(dāng)t=2﹣或時(shí),△PQF為等腰三角形.
故答案為:2﹣ 或 .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)新建了一棟7層的教學(xué)大樓,每層樓有8間教室,進(jìn)出這棟大樓共有八道門(mén),其中四道正門(mén)大小相同,四道側(cè)門(mén)大小也相同.安全檢查中,對(duì)八道門(mén)進(jìn)行了測(cè)試:當(dāng)同時(shí)開(kāi)啟一道正門(mén)和兩道側(cè)門(mén)時(shí),2分內(nèi)可以通過(guò)560名學(xué)生;當(dāng)同時(shí)開(kāi)啟一道正門(mén)和一道側(cè)門(mén)時(shí),4分內(nèi)可以通過(guò)800名學(xué)生.
(1)平均每分內(nèi)一道正門(mén)和一道側(cè)門(mén)分別可以通過(guò)多少名學(xué)生?
(2)檢查中發(fā)現(xiàn),緊急情況時(shí)因?qū)W生擁擠,出門(mén)的效率將降低30%.安全檢查規(guī)定:在緊急情況下全大樓的學(xué)生應(yīng)在5分內(nèi)通過(guò)這八道門(mén)安全撤離,假設(shè)這棟教學(xué)大樓每間教室最多有45名學(xué)生,問(wèn)建造的這八道門(mén)是否符合安全規(guī)定?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果一個(gè)角的兩邊與另一個(gè)角的兩邊分別平行,那么這兩個(gè)角的大小有什么數(shù)量關(guān)系?請(qǐng)說(shuō)明理由。(要求:畫(huà)出圖形,并寫(xiě)出已知,求證,證明過(guò)程)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】直線(xiàn)l1:y=kx+b與直線(xiàn)l2:y=bx+k在同一坐標(biāo)系中的大致位置是( )
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,自來(lái)水廠(chǎng)A和村莊B在小河l的兩側(cè),現(xiàn)要在A(yíng),B間鋪設(shè)一條輸水管道.為了搞好工程預(yù)算,需測(cè)算出A,B間的距離.一小船在點(diǎn)P處測(cè)得A在正北方向,B位于南偏東24.5°方向,前行1200m,到達(dá)點(diǎn)Q處,測(cè)得A位于北偏西49°方向,B位于南偏西41°方向.
(1)線(xiàn)段BQ與PQ是否相等?請(qǐng)說(shuō)明理由;
(2)求A,B間的距離.(參考數(shù)據(jù)cos41°≈0.75)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,將一塊含有45°角的直角三角板如圖放置,直角頂點(diǎn)C的坐標(biāo)為(1,0),頂點(diǎn)A的坐標(biāo)為(0,2),頂點(diǎn)B恰好落在第一象限的雙曲線(xiàn)上,現(xiàn)將直角三角板沿x軸正方向平移,當(dāng)頂點(diǎn)A恰好落在該雙曲線(xiàn)上時(shí)停止運(yùn)動(dòng),則此時(shí)點(diǎn)C的對(duì)應(yīng)點(diǎn)C′的坐標(biāo)為( )
A.( ,0)
B.(2,0)
C.( ,0)
D.(3,0)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠AGF=∠ABC,∠1+∠2=180°.
(1)試判斷BF與DE的位置關(guān)系,并說(shuō)明理由;
(2)若BF⊥AC,∠2=150°,求∠AFG的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系,O為坐標(biāo)原點(diǎn),點(diǎn)A(﹣1,0),點(diǎn)B(0, ).
(1)求∠BAO的度數(shù);
(2)如圖1,將△AOB繞點(diǎn)O順時(shí)針得△A′OB′,當(dāng)A′恰好落在A(yíng)B邊上時(shí),設(shè)△AB′O的面積為S1 , △BA′O的面積為S2 , S1與S2有何關(guān)系?為什么?
(3)若將△AOB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)到如圖2所示的位置,S1與S2的關(guān)系發(fā)生變化了嗎?證明你的判斷.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將邊長(zhǎng)為3的正方形置于平面直角坐標(biāo)系第一象限,使邊落在軸的正半軸上,直線(xiàn):經(jīng)過(guò)點(diǎn)且與軸交于點(diǎn).
(1)求點(diǎn)坐標(biāo);
(2)求的面積;
(3)若直線(xiàn)與軸交于點(diǎn),在軸上是否存在點(diǎn),使得是直角三角形?若存在,請(qǐng)直接寫(xiě)出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com