(2013•南京)如圖,⊙O1,⊙O2的圓心在直線l上,⊙O1的半徑為2cm,⊙O2的半徑為3cm.O1O2=8cm,⊙O1以1cm/s的速度沿直線l向右運(yùn)動,7s后停止運(yùn)動.在此過程中,⊙O1和⊙O2沒有出現(xiàn)的位置關(guān)系是(  )
分析:根據(jù)兩圓的半徑和移動的速度確定兩圓的圓心距的最小值,從而確定兩圓可能出現(xiàn)的位置關(guān)系,找到答案.
解答:解:∵O1O2=8cm,⊙O1以1cm/s的速度沿直線l向右運(yùn)動,7s后停止運(yùn)動,
∴7s后兩圓的圓心距為:1cm,
此時兩圓的半徑的差為:3-2=1cm,
∴此時內(nèi)切,
∴移動過程中沒有內(nèi)含這種位置關(guān)系,
故選D.
點(diǎn)評:本題考查了圓與圓的位置關(guān)系,解題的關(guān)鍵是根據(jù)圓的移動速度確定兩圓的圓心距,然后根據(jù)圓心距和兩圓的半徑確定答案.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•南京)如圖,在四邊形ABCD中,AB=BC,對角線BD平分∠ABC,P是BD上一點(diǎn),過點(diǎn)P作PM⊥AD,PN⊥CD,垂足分別為M,N.
(1)求證:∠ADB=∠CDB;
(2)若∠ADC=90°,求證:四邊形MPND是正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•南京)如圖,將矩形ABCD繞點(diǎn)A順時針旋轉(zhuǎn)到矩形AB′C′D′的位置,旋轉(zhuǎn)角為α(0°<α<90°),若∠1=110°,則∠α=
20°
20°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•南京)如圖,在梯形ABCD中,AD∥BC,AB=DC,AC與BD相交于P.已知A(2,3),B(1,1),D(4,3),則點(diǎn)P的坐標(biāo)為(
3
3
,
7
3
7
3
).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•南京)如圖,AD是⊙O的切線,切點(diǎn)為A,AB是⊙O的弦.過點(diǎn)B作BC∥AD,交⊙O于點(diǎn)C,連接AC,過點(diǎn)C作CD∥AB,交AD于點(diǎn)D.連接AO并延長交BC于點(diǎn)M,交過點(diǎn)C的直線于點(diǎn)P,且∠BCP=∠ACD.
(1)判斷直線PC與⊙O的位置關(guān)系,并說明理由;
(2)若AB=9,BC=6.求PC的長.

查看答案和解析>>

同步練習(xí)冊答案