【題目】如圖①,已知線段AB=16 cm,點C為線段AB上的一個動點(點C不與A,B重合),點D,E分別是AC和BC的中點.
(1)求DE的長;
(2)知識遷移:如圖②,已知∠AOB=130°,過角的內(nèi)部任一點C畫射線OC,若OD,OE分別平分∠AOC和∠BOC,試說明∠DOE的大小與射線OC的位置無關(guān).
【答案】(1) 8 cm;(2) ∠DOE=65°與射線OC位置無關(guān),理由見解析.
【解析】
(1)由DE=DC+CE=AC+BC=AB得出即可;
(2)由∠DOE=∠DOC+∠EOC= (∠AOC+∠BOC)=∠AOB=65°,與射線OC位置無關(guān).
解:(1)∵點D,E分別是AC和BC的中點,
∴DC=AC=CE=BC,
∴DE=DC+CE=AC+BC= (AC+BC)=×16=8 cm;
(2)∵OD,OE分別平分∠AOC和∠BOC,
∴∠DOC=∠AOC,∠EOC=∠BOC,
∴∠DOE=∠DOC+∠EOC= (∠AOC+∠BOC)=∠AOB=65°,
∴∠DOE=65°與射線OC位置無關(guān).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店銷售A型和B型兩種電腦,其中A型電腦每臺的利潤為400元,B型電腦每臺的利潤為500元.該商店計劃再一次性購進兩種型號的電腦共100臺,其中B型電腦的進貨量不超過A型電腦的2倍,設(shè)購進A型電腦x臺,這100臺電腦的銷售總利潤為y元.
(1)求y關(guān)于x的函數(shù)關(guān)系式;
(2)該商店購進A型、B型電腦各多少臺,才能使銷售總利潤最大,最大利潤是多少?
(3)實際進貨時,廠家對A型電腦出廠價下調(diào)a(0<a<200)元,且限定商店最多購進A型電腦60臺,若商店保持同種電腦的售價不變,請你根據(jù)以上信息,設(shè)計出使這100臺電腦銷售總利潤最大的進貨方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校在一次大課間活動中,采用了四鐘活動形式:A、跑步,B、跳繩,C、做操,D、游戲.全校學(xué)生都選擇了一種形式參與活動,小杰對同學(xué)們選用的活動形式進行了隨機抽樣調(diào)查,根據(jù)調(diào)查統(tǒng)計結(jié)果,繪制了不完整的統(tǒng)計圖.
請結(jié)合統(tǒng)計圖,回答下列問題:
(1)本次調(diào)查學(xué)生共人,a= , 并將條形圖補充完整;
(2)如果該校有學(xué)生2000人,請你估計該校選擇“跑步”這種活動的學(xué)生約有多少人?
(3)學(xué)校讓每班在A、B、C、D四鐘活動形式中,隨機抽取兩種開展活動,請用樹狀圖或列表的方法,求每班抽取的兩種形式恰好是“跑步”和“跳繩”的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知 A,B,C 三點都在直線l 上,AC 與 BC 的長度之比為 2:3,D 是 AB 的中點.若 AC4cm,則 CD 的長為 ________________ cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系xOy中,拋物線C:y=ax2+bx+c與x軸相交于A,B兩點,頂點為D(0,4),AB=4 ,設(shè)點F(m,0)是x軸的正半軸上一點,將拋物線C繞點F旋轉(zhuǎn)180°,得到新的拋物線C′.
(1)求拋物線C的函數(shù)表達(dá)式;
(2)若拋物線C′與拋物線C在y軸的右側(cè)有兩個不同的公共點,求m的取值范圍.
(3)如圖2,P是第一象限內(nèi)拋物線C上一點,它到兩坐標(biāo)軸的距離相等,點P在拋物線C′上的對應(yīng)點P′,設(shè)M是C上的動點,N是C′上的動點,試探究四邊形PMP′N能否成為正方形?若能,求出m的值;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在5×5的正方形網(wǎng)格中,每個小正方形的邊長均為1,線段AB的端點在格點上,按要求畫出格點三角形,并求其面積.
(1)在圖①中畫出一個以 AB為腰的等腰三角形 ABC,其面積為____________.
(2) 在圖②中畫出一個以AB為底的等腰三角形ABC,其面積為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】正方形ABCD的邊長為6cm,點E、M分別是線段BD、AD上的動點,連接AE并延長,交邊BC于F,過M作MN⊥AF,垂足為H,交邊AB于點N.
(1)如圖1,若點M與點D重合,求證:AF=MN;
(2)如圖2,若點M從點D出發(fā),以1cm/s的速度沿DA向點A運動,同時點E從點B出發(fā),以 cm/s的速度沿BD向點D運動,運動時間為t s.
①設(shè)BF=y cm,求y關(guān)于t的函數(shù)表達(dá)式;
②當(dāng)BN=2AN時,連接FN,求FN的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com