【題目】如圖:平行四邊形ABCD中,EAB中點(diǎn),,連EFACG,則AGGC=______________;

【答案】15

【解析】

延長FECB的延長線于M,利用已知條件證明△AFE≌△BME,可得到AF=BM,再有平行線四邊形的性質(zhì)可證明△AFG∽△CMG,利用相似三角形的性質(zhì)即可求出AGGC的值.

解:延長FECB的延長線于M,
∵四邊形ABCD是平行四邊形,
∴∠EAF=MBE,∠AFE=BME
又∵AE=BE,
∴△AFE≌△BMEAAS),
AF=BM,
AFFD=13,
AFAD=14,
AFMC=15,
ADBC,
∴△AFG∽△CMG,
AFMC=AGGC=15,
故答案為:15

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,線段AB經(jīng)過圓心O,交⊙O于點(diǎn)AC,點(diǎn)D為⊙O上一點(diǎn),連結(jié)AD、OD、BD,∠A=∠B30°.

1)求證:BD是⊙O的切線.

2)若OA5,求OAODAD圍成的扇形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中,A的圓心A的坐標(biāo)為(﹣10),半徑為1,點(diǎn)P為直線y=﹣x+3上的動(dòng)點(diǎn),過點(diǎn)PA的切線,切點(diǎn)為Q,則切線長PQ的最小值是( 。

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,CB=CA,∠ACB=90°,點(diǎn)D在邊BC上(與B,C不重合),四邊形ADEF為正方形,過點(diǎn)F作FG⊥CA,交CA的延長線于點(diǎn)G,連接FB,交DE于點(diǎn)Q,給出以下結(jié)論:①AC=FG;②S△FAB∶S四邊形CBFG=1∶2;③∠ABC=∠ABF;④AD2=FQ·AC,其中正確結(jié)論的個(gè)數(shù)是(  )

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在四邊形ABCD中,點(diǎn)EF分別是AB、CD的中點(diǎn),過點(diǎn)EAB的垂線,過點(diǎn)FCD的垂線,兩垂線交于點(diǎn)G,連接AGBG、CG、DG,且∠AGD∠BGC

1)求證:ADBC;

2)求證:△AGD∽△EGF

3)如圖2,若AD、BC所在直線互相垂直,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知梯形中,,且,,。

⑴如圖,P上的一點(diǎn),滿足∠BPC=A,求AP的長;

⑵如果點(diǎn)P邊上移動(dòng)(點(diǎn)P與點(diǎn)不重合),且滿足∠BPE=A,交直線于點(diǎn)E,同時(shí)交直線DC于點(diǎn)

①當(dāng)點(diǎn)在線段DC的延長線上時(shí),設(shè),CQ=y,求關(guān)于的函數(shù)關(guān)系式,并寫出自變量的取值范圍;

②寫CE=1時(shí),寫出AP的長(不必寫解答過程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,拋物線yax2+bx+c的開口向上,與x軸相交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的右側(cè)),點(diǎn)A的坐標(biāo)為(m,0),且AB4

1)填空:點(diǎn)B的坐標(biāo)為   (用含m的代數(shù)式表示);

2)把射線AB繞點(diǎn)A按順時(shí)針方向旋轉(zhuǎn)135°與拋物線交于點(diǎn)P,△ABP的面積為8

①求拋物線的解析式(用含m的代數(shù)式表示);

②當(dāng)0x1,拋物線上的點(diǎn)到x軸距離的最大值為時(shí),求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某興趣小組同學(xué)借助無人機(jī)航拍測量某公園內(nèi)一座古塔高度.如圖,無人機(jī)在距離地面168米的A處,測得該塔底端點(diǎn)B的俯角為40°,然后向古塔方向沿水平面飛行50秒到達(dá)點(diǎn)C處,此時(shí)測得該塔頂端點(diǎn)D的俯角為60°.已知無人機(jī)的飛行速度為3/秒,則這座古塔的高度約為_____米(參考計(jì)算:sin40°≈064cos40°≈077tan40°≈0.84.1.41. 1.73.結(jié)果精確到0.1米)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知的直徑,過點(diǎn)作,交弦于點(diǎn),交于點(diǎn),且使.

1)求證:的切線;

2)若,,求的長.

查看答案和解析>>

同步練習(xí)冊答案