如圖,扇形的圓心角∠AOB=60°,AD=3cm,弧CD的長為3πcm,則圖中陰影部分的面積為( 。
A.
9
2
πcm2
B.
15
2
πcm2
C.
21
2
πcm2
D.12πcm2

∠DOC=60°,
CD=3π=
60πR
180
,解得R=9(cm),
OA=9+3=12(cm),
S扇形OAB-S扇形OCD=
π60(122-92)
360
=
π×21×3
6
=
21
2
π(cm2).
故選C.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,將半徑為1、圓心角為60°的扇形紙片AOB,在直線l上向右作無滑動的滾動至扇形A′O′B′處,則頂點O經(jīng)過的路線總長為( 。
A.2πB.
3
C.
3
D.
2

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

邊長為4cm的正方形ABCD繞它的頂點A旋轉(zhuǎn)180°,頂點B所經(jīng)過的路線長為( 。ヽm.
A.4πB.3πC.2πD.π

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,四邊形OABC為菱形,點A,B在以O(shè)為圓心的弧上,若OA=2,∠1=∠2,求扇形ODE的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,已知OA、OB是⊙O的半徑,且OA=5,∠AOB=15°,AC⊥OB于C,則圖中陰影部分的面積(結(jié)果保留π)S=______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,將含60°角的直角三角板ABC繞頂點A順時針旋轉(zhuǎn)45°度后得到△AB′C′,點B經(jīng)過的路徑為弧BB′,若∠BAC=60°,AC=1,則圖中陰影部分的面積是( 。
A.
π
2
B.
π
3
C.
π
4
D.π

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,菱形OABC中,∠A=120°,OA=1,將菱形OABC繞點O按順時針方向旋轉(zhuǎn)90°,則圖中陰影部分的面積是______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

分別以n邊形的頂點為圓心,以單位1為半徑畫圓,如圖所示,則圖中陰影部分的面積之和是多少個平方單位?( 。
A.πn2B.2πnC.
1
2
πn2
D.π

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,陰影部分是由同心圓
AB
CD
所圍成的.已知OA=3cm,OC=2cm,∠AOB=120°,求陰影部分的面積(結(jié)果保留л).

查看答案和解析>>

同步練習冊答案