分析 (1)過點(diǎn)M作MP⊥ON,垂足為點(diǎn)P,根據(jù)已知條件得到MP=6,由勾股定理得到OP=$\sqrt{{{10}^2}-{6^2}}=8$,于是得到點(diǎn)M的坐標(biāo)是(8,6);
(2)由(1),知MP=6,PN=20-8=12,根據(jù)勾股定理得到MN=$\sqrt{{6}^{2}+1{2}^{2}}$=6$\sqrt{5}$,于是得到結(jié)論.
解答 解:(1)過點(diǎn)M作MP⊥ON,垂足為點(diǎn)P,
在Rt△MOP中,由sin∠MON=$\frac{3}{5}$,OM=10,
得$\frac{MP}{10}=\frac{3}{5}$,
即MP=6,由
勾股定理,得OP=$\sqrt{{{10}^2}-{6^2}}=8$,
∴點(diǎn)M的坐標(biāo)是(8,6);
(2)由(1),知MP=6,PN=20-8=12,
∴MN=$\sqrt{{6}^{2}+1{2}^{2}}$=6$\sqrt{5}$,
∴cos∠MNO=$\frac{PN}{MN}=\frac{12}{{6\sqrt{5}}}=\frac{{2\sqrt{5}}}{5}$.
點(diǎn)評(píng) 本題考查了解直角三角形,坐標(biāo)于圖形的性質(zhì),正確的作出輔助線是解題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com