【題目】如圖,ABC中,∠ACB=90°,AC=ANBC=BM,則∠MCN=( )

A. 30°B. 45°C. 60°D. 55°

【答案】B

【解析】

設(shè)∠BMC=x,∠ANC=y.由BC=BM,根據(jù)等邊對等角得出∠BCM=BMC=x,利用三角形內(nèi)角和定理得出∠B=180°-2x.同理得到∠ACN=ANC=y,∠A=180°-2y.根據(jù)直角三角形兩銳角互余得出∠A+B=90°,那么x+y=135°,即∠BCM+ACN=135°,進(jìn)而求出∠MCN=BCM+ACN-ACB=45°

設(shè)∠BMC=x,∠ANC=y

BC=BM,

∴∠BCM=BMC=x,∠B=180°-2x

AC=AN,

∴∠ACN=ANC=y,∠A=180°-2y

∵△ABC為直角三角形,∠ACB=90°

∴∠A+B=90°,

180°-2y+180°-2x=90°,

x+y=135°,

∴∠BCM+ACN=135°,

∴∠MCN=BCM+ACN-ACB=135°-90°=45°

故選B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=x2﹣2x﹣3x軸交A、B兩點(diǎn)(A點(diǎn)在B點(diǎn)左側(cè)),直線1與拋物線交于A、C兩點(diǎn),其中C點(diǎn)的橫坐標(biāo)為2.

(1)求A、B兩點(diǎn)的坐標(biāo)及直線AC的函數(shù)表達(dá)式;

(2)P是線段AC上的一個動點(diǎn),過P點(diǎn)作y軸的平行線交拋物線于E點(diǎn),設(shè)P點(diǎn)的橫坐標(biāo)為m.

①求線段PE長度的最大值;

②點(diǎn)P將線段AC分割成長、短兩條線段PA、PC,如果較長線段與AC之比等于,則稱P為線段AC黃金分割點(diǎn),請直接寫出使得P為線段AC黃金分割點(diǎn)的m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:如圖①,拋物線y=ax2+bx+c(a≠0)與x軸交于A,B兩點(diǎn),點(diǎn)P在該拋物線上(P點(diǎn)與A、B兩點(diǎn)不重合).如果△ABP的三邊滿足AP2+BP2=AB2,則稱點(diǎn)P為拋物線y=ax2+bx+c(a≠0)的勾股點(diǎn).

(1)直接寫出拋物線y=-x2+1的勾股點(diǎn)的坐標(biāo).

(2)如圖②,已知拋物線y=ax2+bx(a≠0)與x軸交于A,B兩點(diǎn),點(diǎn)P(1, )是拋物線的勾股點(diǎn),求拋物線的函數(shù)表達(dá)式.

(3)在(2)的條件下,點(diǎn)Q在拋物線上,求滿足條件S△ABQ=S△ABP的Q點(diǎn)(異于點(diǎn)P)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中,,,.長為的線段的邊上沿方向以的速度向點(diǎn)運(yùn)動(運(yùn)動前點(diǎn)與點(diǎn)重合).過,分別作的垂線交直角邊于兩點(diǎn),線段運(yùn)動的時間為

的面積為,寫出的函數(shù)關(guān)系式(寫出自變量的取值范圍);

線段運(yùn)動過程中,四邊形有可能成為矩形嗎?若有可能,求出此時t的值;若不可能,說明理由;

為何值時,以,,為頂點(diǎn)的三角形與相似?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,A(1,2),B(31),C(-2,-1).

1)在圖中作出關(guān)于軸對稱的;

2)寫出點(diǎn)A1C1的坐標(biāo)(直接寫答案);A1 _________,C1 _________,

3的面積為_______________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】賽龍舟是端午節(jié)的主要習(xí)俗,某市甲乙兩支龍舟隊在端午節(jié)期間進(jìn)行劃龍舟比賽,從起點(diǎn)A駛向終點(diǎn)B,在整個行程中,龍舟離開起點(diǎn)的距離y(米)與時間x(分鐘)的對應(yīng)關(guān)系如圖所示,請結(jié)合圖象解答下列問題:

1)起點(diǎn)A與終點(diǎn)B之間相距多遠(yuǎn)?

2)哪支龍舟隊先出發(fā)?哪支龍舟隊先到達(dá)終點(diǎn)?

3)分別求甲、乙兩支龍舟隊的yx函數(shù)關(guān)系式;

4)甲龍舟隊出發(fā)多長時間時兩支龍舟隊相距200米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在正方形ABCD中,對角線ACBD相交于點(diǎn)O,OEABBC于點(diǎn)E.AD=8cm,則OE的長為( )

A. 3cm B. 4cm C. 6cm D. 8cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,Aa0),B0a),等腰直角三角形ODC的斜邊經(jīng)過點(diǎn)BOEAC,交ACE,若OE2,則△BOD與△AOE的面積之差為( 。

A.2B.3C.4D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,A(12),B(31),C(-2,-1).

1)在圖中作出關(guān)于軸對稱的.

2)寫出點(diǎn)的坐標(biāo)(直接寫答案).

A1_____________B1______________,C1______________

查看答案和解析>>

同步練習(xí)冊答案