如圖,在△ABC中,∠A=90°,AB=2cm,AC=4cm.動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿AB方向以1cm/s的速度向點(diǎn)B運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)B同時(shí)出發(fā),沿BA方向以1cm/s的速度向點(diǎn)A運(yùn)動(dòng).當(dāng)點(diǎn)P到達(dá)點(diǎn)B時(shí),P,Q兩點(diǎn)同時(shí)停止運(yùn)動(dòng),以AP為一邊向上作正方形APDE,過點(diǎn)Q作QF∥BC,交AC于點(diǎn)F.設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為ts,正方形和梯形重合部分的面積為Scm2
(1)當(dāng)t= _________ s時(shí),點(diǎn)P與點(diǎn)Q重合;
(2)當(dāng)t= _________ s時(shí),點(diǎn)D在QF上;
(3)當(dāng)點(diǎn)P在Q,B兩點(diǎn)之間(不包括Q,B兩點(diǎn))時(shí),求S與t之間的函數(shù)關(guān)系式.
(1)1    (2)     (3)

試題分析:(1)當(dāng)點(diǎn)P與點(diǎn)Q重合時(shí),AP=BQ=t,且AP+BQ=AB=2,
∴t+t=2,解得t=1s,
故填空答案:1.
(2)當(dāng)點(diǎn)D在QF上時(shí),如答圖1所示,此時(shí)AP=BQ=t.
∵QF∥BC,APDE為正方形,∴△PQD∽△ABC,
∴DP:PQ=AC:AB=2,則PQ=DP=AP=t.
由AP+PQ+BQ=AB=2,得t+t+t=2,解得:t=
故填空答案:
(3)當(dāng)P、Q重合時(shí),由(1)知,此時(shí)t=1;
當(dāng)D點(diǎn)在BC上時(shí),如答圖2所示,此時(shí)AP=BQ=t,BP=t,求得t=s,進(jìn)一步分析可知此時(shí)點(diǎn)E與點(diǎn)F重合;
當(dāng)點(diǎn)P到達(dá)B點(diǎn)時(shí),此時(shí)t=2.
因此當(dāng)P點(diǎn)在Q,B兩點(diǎn)之間(不包括Q,B兩點(diǎn))時(shí),其運(yùn)動(dòng)過程可分析如下:
①當(dāng)1<t≤時(shí),如答圖3所示,此時(shí)重合部分為梯形PDGQ.
此時(shí)AP=BQ=t,∴AQ=2﹣t,PQ=AP﹣AQ=2t﹣2;
易知△ABC∽△AQF,可得AF=2AQ,EF=2EG.
∴EF=AF﹣AE=2(2﹣t)﹣t=4﹣3t,EG=EF=2﹣t,
∴DG=DE﹣EG=t﹣(2﹣t)=t﹣2.
S=S梯形PDGQ=(PQ+DG)•PD=[(2t﹣2)+(t﹣2)]•t=t2﹣2t;
②當(dāng)<t<2時(shí),如答圖4所示,此時(shí)重合部分為一個(gè)多邊形.
此時(shí)AP=BQ=t,∴AQ=PB=2﹣t,
易知△ABC∽△AQF∽△PBM∽△DNM,可得AF=2AQ,PM=2PB,DM=2DN,
∴AF=4﹣2t,PM=4﹣2t.
又DM=DP﹣PM=t﹣(4﹣2t)=3t﹣4,∴DN=(3t﹣4).
S=S正方形APDE﹣SAQF﹣SDMN=AP2AQ•AF﹣DN•DM
=t2(2﹣t)(4﹣2t)﹣×(3t﹣4)×(3t﹣4)
=﹣t2+10t﹣8.
綜上所述,當(dāng)點(diǎn)P在Q,B兩點(diǎn)之間(不包括Q,B兩點(diǎn))時(shí),S與t之間的函數(shù)關(guān)系式為:
S=


點(diǎn)評(píng):本題是運(yùn)動(dòng)型綜合題,涉及到動(dòng)點(diǎn)與動(dòng)線問題.第(1)(2)問均涉及動(dòng)點(diǎn)問題,列方程即可求出t的值;第(3)問涉及動(dòng)線問題,是本題難點(diǎn)所在,首先要正確分析動(dòng)線運(yùn)動(dòng)過程,然后再正確計(jì)算其對(duì)應(yīng)的面積S.本題難度較大,需要同學(xué)們具備良好的空間想象能力和較強(qiáng)的邏輯推理能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

兩個(gè)全等的直角三角形重疊放在直線l上,如圖(1),AB=6cm,BC=8cm,∠ABC=90°,將Rt△ABC在直線l上左右平移,如圖(2)所示.
(1)求證:四邊形ACFD是平行四邊形;
(2)怎樣移動(dòng)Rt△ABC,使得四邊形ACFD為菱形;
(3)將Rt△ABC向左平移4cm,求四邊形DHCF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在正方形ABCD中,E是BC上的一點(diǎn),連接AE,作BF⊥AE,垂足為H,交CD于F,作CG∥AE,交BF于G.求證:
(1)CG=BH;
(2)FC2=BF•GF;
(3)=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如果 ,則k的值為______。
A.B.C.1D.-1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖、分別在的邊上,要使△AED∽△ABC,應(yīng)添加條件是            ;(只寫出一種即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

正方形ABCD中,E為AD上的一點(diǎn)(不與A、D點(diǎn)重合),AD=nAE,BE的垂直平分線分別交AB、CD于F、G兩點(diǎn),垂足為H.
(1)如圖1,當(dāng)n=2時(shí),則= _________ ;
(2)如圖1,當(dāng)n=2時(shí),求的值;
(3)延長FG交BC的延長線于M(如圖2),直接填空:當(dāng)n= _________ 時(shí),

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在△ABC中,AB=4,如圖(1)所示,DE∥BC,DE把ABC分成面積相等的兩部分,即S=S,求AD的長.
如圖(2)所示,DE∥FG∥BC,DE、FG把△ABC分成面積相等的三部分,即S=S=S,求AD的長;
如圖(3)所示,DE∥FG∥HK∥…∥BC,DE、FG、HK、…把△ABC分成面積相等的n部分,S=S=S=…,請(qǐng)直接寫出AD的長.
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,小明作出了邊長為1的第1個(gè)正△A1B1C1,算出了正△A1B1C1的面積.然后分別取△A1B1C1三邊的中點(diǎn)A2、B2、C2,作出了第2個(gè)正△A2B2C2,算出了正△A2B2C2的面積.用同樣的方法,作出了第3個(gè)正△A3B3C3,算出了正△A3B3C3的面積…,由此可得,第10個(gè)正△A10B10C10的面積是( 。
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在△ABC中,D、E分別是AB、AC上的點(diǎn),DE∥BC,且AD=AB,則△ADE的周長與△ABC的周長的比為          

查看答案和解析>>

同步練習(xí)冊(cè)答案