如圖,在直角坐標(biāo)系xOy中,正方形OCBA的頂點(diǎn)A,C分別在y軸,x軸上,點(diǎn)B坐標(biāo)為(6,6),拋物線y=ax2+bx+c經(jīng)過點(diǎn)A,B兩點(diǎn),且3a-b=-1.
(1)求a,b,c的值;
(2)如果動點(diǎn)E,F(xiàn)同時(shí)分別從點(diǎn)A,點(diǎn)B出發(fā),分別沿A→B,B→C運(yùn)動,速度都是每秒1個(gè)單位長度,當(dāng)點(diǎn)E到達(dá)終點(diǎn)B時(shí),點(diǎn)E,F(xiàn)隨之停止運(yùn)動,設(shè)運(yùn)動時(shí)間為t秒,△EBF的面積為S.
①試求出S與t之間的函數(shù)關(guān)系式,并求出S的最大值;
②當(dāng)S取得最大值時(shí),在拋物線上是否存在點(diǎn)R,使得以E,B,R,F(xiàn)為頂點(diǎn)的四邊形是平行四邊形?如果存在,求出點(diǎn)R的坐標(biāo);如果不存在,請說明理由.

(1),,;(2)s=-(t-3)2+,; (9,3).

解析試題分析:(1)由于四邊形OABC是正方形,易知點(diǎn)A的坐標(biāo),將A、B的坐標(biāo)分別代入拋物線的解析式中,聯(lián)立3a-b=-1,即可求得待定系數(shù)的值.
(2)①用t分別表示出BE、BF的長,利用直角三角形面積公式求出△EBF的面積,從而得到關(guān)于S、t的函數(shù)關(guān)系式,根據(jù)函數(shù)的性質(zhì)即可求得S的最大值;
②當(dāng)S取最大值時(shí),即可確定BE、BF的長,若E、B、R、F為頂點(diǎn)的四邊形是平行四邊形,可有兩種情況:一、EB平行且相等于FR,二、ER平行且相等于FB;只需將E點(diǎn)坐標(biāo)向上、向下平移BF個(gè)單位或?qū)點(diǎn)坐標(biāo)向左、向右平移BE個(gè)單位,即可得到R點(diǎn)坐標(biāo),然后將它們代入拋物線的解析式中進(jìn)行驗(yàn)證,找出符合條件的R點(diǎn)即可.
(1)由已知A(0,6),B(6,6)在拋物線上,
得方程組,解得

(2)①運(yùn)動開始t秒時(shí),EB=6-t,BF=t,
S=EB•BF=(6-t)t=-t2+3t,
以為S=-t2+3t=-(t-3)2+,
所以當(dāng)t=3時(shí),S有最大值
②當(dāng)S取得最大值時(shí),
∵由①知t=3,
∴BF=3,CF=3,EB=6-3=3,
若存在某點(diǎn)R,使得以E,B,R,F(xiàn)為頂點(diǎn)的四邊形是平行四邊形,
則FR1=EB且FR1∥EB,
即可得R1為(9,3),R2(3,3);
或者ER3=BF,ER3∥BF,可得R3(3,9).
再將所求得的三個(gè)點(diǎn)代入y=-x2+x+6,可知只有點(diǎn)(9,3)在拋物線上,
因此拋物線上存在點(diǎn)R(9,3),使得四邊形EBRF為平行四邊形.
考點(diǎn):二次函數(shù)綜合題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,拋物線經(jīng)過A、C(0,4)兩點(diǎn),與x軸的另一交點(diǎn)是B.
(1)求拋物線的解析式;
(2)若點(diǎn)在第一象限的拋物線上,求點(diǎn)D關(guān)于直線BC的對稱點(diǎn)的坐標(biāo);
(3)在(2)的條件下,過點(diǎn)D作DE⊥BC于點(diǎn)E,反比例函數(shù)的圖象經(jīng)過點(diǎn)E,點(diǎn)在此反比例函數(shù)圖象上,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知:把Rt△ABC和Rt△DEF按如圖(1)擺放(點(diǎn)C與點(diǎn)E重合),點(diǎn)B、C(E)、F在同一條直線上.∠ACB = ∠EDF = 90°,∠DEF = 45°,AC =" 8" cm,BC =" 6" cm,EF =" 9" cm。
如圖(2),△DEF從圖(1)的位置出發(fā),以1 cm/s的速度沿CB向△ABC勻速移動,在△DEF移動的同時(shí),點(diǎn)P從△ABC的頂點(diǎn)B出發(fā),以2 cm/s的速度沿BA向點(diǎn)A勻速移動。當(dāng)△DEF的頂點(diǎn)D移動到AC邊上時(shí),△DEF停止移動,點(diǎn)P也隨之停止移。DE與AC相交于點(diǎn)Q,連接PQ,設(shè)移動時(shí)間為t(s)(0<t<4.5)。解答下列問題:
(1)當(dāng)t為何值時(shí),點(diǎn)A在線段PQ的垂直平分線上?
(2)連接PE,設(shè)四邊形APEC的面積為y(cm2),求y與t之間的函數(shù)關(guān)系式;是否存在某一時(shí)刻t,使面積y最?若存在,求出y的最小值;若不存在,說明理由。
(3)是否存在某一時(shí)刻t,使P、Q、F三點(diǎn)在同一條直線上?若存在,求出此時(shí)t的值;若不存在,說明理由。(圖(3)供同學(xué)們做題使用)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,拋物線過點(diǎn),這條拋物線的對稱軸與x軸交于點(diǎn)C,點(diǎn)P為射線CB上一個(gè)動點(diǎn)(不與點(diǎn)C重合),點(diǎn)D為此拋物線對稱軸上一點(diǎn),且?CPD=
(1)求拋物線的解析式;
(2)若點(diǎn)P的橫坐標(biāo)為m,△PCD的面積為S,求S與m之間的函數(shù)關(guān)系式;
(3)過點(diǎn)P作PE⊥DP,連接DE,F(xiàn)為DE的中點(diǎn),試求線段BF的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知二次函數(shù)與x軸交于A(1,0)、B(3,0)兩點(diǎn);二次函數(shù)的頂點(diǎn)為P.
(1)請直接寫出:b=_______,c=___________;
(2)當(dāng)∠APB=90°,求實(shí)數(shù)k的值;
(3)若直線與拋物線L2交于E,F(xiàn)兩點(diǎn),問線段EF的長度是否發(fā)生變化?如果不發(fā)生變化,請求出EF的長度;如果發(fā)生變化,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

平面直角坐標(biāo)第xoy中,A點(diǎn)的坐標(biāo)為(0,5).B、C分別是x軸、y軸上的兩個(gè)動點(diǎn),C從A出發(fā),沿y軸負(fù)半軸方向以1個(gè)單位/秒的速度向點(diǎn)O運(yùn)動,點(diǎn)B從O出發(fā),沿x軸正半軸方向以1個(gè)單位/秒的速度運(yùn)動.設(shè)運(yùn)動時(shí)間為t秒,點(diǎn)D是線段OB上一點(diǎn),且BD=OC.點(diǎn)E是第一象限內(nèi)一點(diǎn),且AEDB.
(1)當(dāng)t=4秒時(shí),求過E、D、B三點(diǎn)的拋物線解析式.
(2)當(dāng)0<t<5時(shí),(如圖甲),∠ECB的大小是否隨著C、B的變化而變化?如果不變,求出它的大。
(3)求證:∠APC=45°
(4)當(dāng)t>5時(shí),(如圖乙)∠APC的大小還是45°嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A、B兩點(diǎn),其中A點(diǎn)坐標(biāo)為(-1,0), 點(diǎn)C(0,5),點(diǎn)D(1,8)在拋物線上,M為拋物線的頂點(diǎn).求

(1)拋物線的解析式;
(2)求△MCB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

某公司開發(fā)了一種新型的家電產(chǎn)品,又適逢“家電下鄉(xiāng)”的優(yōu)惠政策.現(xiàn)投資40萬元用于該產(chǎn)品的廣告促銷,已知該產(chǎn)品的本地銷售量y1(萬臺)與本地的廣告費(fèi)用x(萬元)之間的函數(shù)關(guān)系滿足,該產(chǎn)品的外地銷售量y2(萬臺)與外地廣告費(fèi)用t(萬元)之間的函數(shù)關(guān)系可用如圖所示的拋物線和線段AB來表示,其中點(diǎn)A為拋物線的頂點(diǎn).

(1)結(jié)合圖象,寫出y2(萬臺)與外地廣告費(fèi)用t(萬元)之間的函數(shù)關(guān)系式;
(2)求該產(chǎn)品的銷售總量y(萬臺)與外地廣告費(fèi)用t(萬元)之間的函數(shù)關(guān)系式;
(3)如何安排廣告費(fèi)用才能使銷售總量最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,在平行四邊形ABCD中,AB=5,BC=10,F(xiàn)為AD的中點(diǎn),CE⊥AB于E,設(shè)∠ABC=α(60°≤α<90°).

(1)當(dāng)α=60°時(shí),求CE的長;
(2)當(dāng)60°<α<90°時(shí),
①是否存在正整數(shù)k,使得∠EFD=k∠AEF?若存在,求出k的值;若不存在,請說明理由.
②連接CF,當(dāng)CE2-CF2取最大值時(shí),求tan∠DCF的值.

查看答案和解析>>

同步練習(xí)冊答案