【題目】(1)如圖(1),在ABC,AB=AC,O為ABC內(nèi)一點,且OB=OC,求證:直線AO垂直平分BC.以下是小明的證題思路,請補全框圖中的分析過程.

(2)如圖(2),在ABC中,AB=AC,點D、E分別在AB、AC上,且BD=CE.請你只用無刻度的直尺畫出BC邊的垂直平分線(不寫畫法,保留畫圖痕跡).

(3)如圖(3),在五邊形ABCDE中,AB=AE,BC=DE,B=E,請你只用無刻度的直尺畫出CD邊的垂直平分線,并說明理由.

【答案】(1)見解析;(2)見解析;(3)見解析

【解析】

試題分析:(1)根據(jù)線段垂直平分線的性質(zhì)定理的逆定理,只要AB=AC,OB=OC即可說明直線AO垂直平分BC;

(2)連結(jié)BE、CD相交于點O,則直線AO為BC邊的垂直平分線;

(3)連結(jié)BD、CE相交于點O,則直線AO為CD邊的垂直平分線.先證明ABC≌△AED得到AC=AD,ACB=ADE,根據(jù)等腰三角形的性質(zhì)得ACD=ADC,所以BCD=EDC,再證明BCD≌△ECD,則BDC=ECD,所以O(shè)D=OC,于是根據(jù)線段垂直平分線定理的逆定理即可判斷直線AO為CD邊的垂直平分線.

解:(1)

(2)如圖(2),AO為所作;

(3)如圖(3),AO為所作.

ABCAED

,

∴△ABC≌△AED,

AC=ADACB=ADE,

∴∠ACD=ADC

∴∠BCD=EDC,

BCDEDC中,

,

∴△BCD≌△ECD

∴∠BDC=ECD,

OD=OC,

AO垂直平分CD.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】點A在數(shù)軸上表示+2,從點A沿數(shù)軸向左平移3個單位到點B,則點B所表示的實數(shù)是(

A. 3 B. 1 C. 5 D. 1或3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在等邊ABC中,D是邊AC上一點,連接BD,將BCD繞點B逆時針旋轉(zhuǎn)60°,得到BAE,連接ED,若BC=10,BD=9.則下列結(jié)論錯誤的是( )

A.AEBC

B.ADE的周長是19

C.BDE是等邊三角形

D.ADE=BDC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某區(qū)環(huán)保部門為了提高宣傳垃圾分類的實效,抽樣調(diào)查了部分居民小區(qū)一段時間內(nèi)生活垃圾的分類情況,進(jìn)行整理后,繪制了如下兩幅不完整的統(tǒng)計圖:

根據(jù)統(tǒng)計圖解答下列問題:

(1)求抽樣調(diào)查的生活垃圾的總噸數(shù)以及其中的有害垃圾的噸數(shù);

(2)求扇形統(tǒng)計圖中,“D”部分所對應(yīng)的圓心角的度數(shù),并將條形統(tǒng)計圖補充完整;

(3)調(diào)查發(fā)現(xiàn),在可回收物中廢紙垃圾約占,每回收1噸廢紙可再造0.85噸的再生紙,假設(shè)該城市每月生產(chǎn)的生活垃圾為10000噸,且全部分類處理,那么每月回收的廢紙可制成再生紙多少噸?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2016年春節(jié)期間,在網(wǎng)絡(luò)上用“百度”搜索引擎搜索“開放二孩”,能搜索到與之相關(guān)的結(jié)果個數(shù)約為45100000,這個數(shù)用科學(xué)記數(shù)法表示為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若y=(m-2)x+(m2-4)是正比例函數(shù),則m的取值是( )

A.2 B.-2 C.±2 D.任意實數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是二次函數(shù)y=ax2+bx+c(a≠0)圖象的一部分,x=﹣1是對稱軸,有下列判斷:①b﹣2a=0;②4a﹣2b+c<0;③a﹣b+c=﹣9a;④若(﹣3,y1),(3,y2)是拋物線上兩點,則y1>y2,其中正確的序號是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是

A、 0.720精確到百分位 B、 3.61萬精確到百分位

C、 5.078精確到千分位 D、 3000精確到千位

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個多邊形的內(nèi)角和等于外角和,則這個多邊形是_________邊形 .

查看答案和解析>>

同步練習(xí)冊答案