【題目】如圖,在ABC中,∠A=90°,AB=3,AC=4,點(diǎn)M、Q分別是邊AB、BC上的動(dòng)點(diǎn)(點(diǎn)M不與A、B重合),且MQ⊥BC,過點(diǎn)M作MN∥BC.交AC于點(diǎn)N,連接NQ,設(shè)BQ=x.
(1)是否存在一點(diǎn)Q,使得四邊形BMNQ為平行四邊形,并說明理由;
(2)當(dāng)BM=2時(shí),求x的值;
(3)當(dāng)x為何值時(shí),四邊形BMNQ的面積最大,并求出最大值.
【答案】(1)存在,當(dāng)BQ=MN=時(shí),四邊形BMNQ為平行四邊形,見解析;(2);(3)當(dāng)x=時(shí),四邊形BMNQ的面積最大,最大值為
【解析】
(1)先證明△AMN∽△ABC,得到==;再設(shè)AM=3a、則MN=5a,即BQ=MN=5a.然后再證明△MBQ∽△NMA,再運(yùn)用相似三角形的性質(zhì)列式求出a,進(jìn)而求得BQ的長(zhǎng);再由MN∥BQ,即可得到BQ=MN=,四邊形BMNQ為平行四邊形;
(2)再證△BMQ∽△BCA可得=,即=,最后求解即可;
(3)先由勾股定理求出BC的長(zhǎng),再根據(jù)相似三角形的性質(zhì)用x表示出QM、BM,然后根據(jù)梯形面積公式列出二次函數(shù)解析式,最后根據(jù)二次函數(shù)性質(zhì)計(jì)算即可.
解:(1)存在,理由如下:
∵M(jìn)N∥BC,
∴△AMN∽△ABC,
∴==,
設(shè)AM=3a,則MN=5a,
∴BQ=MN=5a,
∵M(jìn)N∥BQ,
∴∠NMQ=∠MQB=90°,
∴∠AMN+∠BMQ=90°,
又∠B+∠BMQ=90°,
∴∠B=∠AMN,
又∠MQB=∠A=90°,
∴△MBQ∽△NMA,
∴=,即=,
解得a=,
∴BQ=,
∵M(jìn)N∥BQ,
∴當(dāng)BQ=MN=,四邊形BMNQ為平行四邊形;
∴當(dāng)BQ=MN時(shí),四邊形BMNQ為平行四邊形,
(2)∵∠BQM=∠A=90°,∠B=∠B,
∴△BMQ∽△BCA,
∴=,即=,
解得x=;
(3)∵∠A=90°,AB=3,AC=4,
∴BC==5,
∵△QBM∽△ABC,
∴==,即==,
解得,QM=x,BM=x,
∵M(jìn)N∥BC,
∴=,即=,
解得,MN=5﹣x,則四邊形BMNQ的面積=×(5﹣x+x)×x=﹣(x﹣)2+,
∴當(dāng)x=時(shí),四邊形BMNQ的面積最大,最大值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線:(為常數(shù))的頂點(diǎn)為.
(1)求點(diǎn)的坐標(biāo);(用含的式子表示)
(2)在同一平面直角坐標(biāo)系中,存在函數(shù)圖象,點(diǎn)在圖象上,點(diǎn)在拋物線上,對(duì)于任意的實(shí)數(shù),都有點(diǎn),關(guān)于點(diǎn)對(duì)稱.
①當(dāng)時(shí),求圖象對(duì)應(yīng)函數(shù)的解析式;
②當(dāng)時(shí),都有成立,結(jié)合圖象,求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,平面直角坐標(biāo)系xOy中,矩形ABCD的邊AB=4,BC=6.在不改變矩形ABCD的形狀和大小的情況下,當(dāng)矩形的頂點(diǎn)A在x軸的正半軸上左右移動(dòng)時(shí),另一個(gè)頂點(diǎn)D始終在y軸的正半軸上隨之上下移動(dòng).
(1)當(dāng)∠OAD=30°時(shí),求點(diǎn)C的坐標(biāo);
(2)設(shè)AD的中點(diǎn)為M,連接OM、MC,若四邊形OMCD的面積為時(shí),求OA的長(zhǎng);
(3)在點(diǎn)A移動(dòng)過程中是否存在某一位置,使點(diǎn)C到點(diǎn)O的距離有最大值?若存在,求此時(shí)的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了加快“智慧校園”建設(shè),某市準(zhǔn)備為試點(diǎn)學(xué)校采購(gòu)一批、兩種型號(hào)的一體機(jī),經(jīng)過市場(chǎng)調(diào)查發(fā)現(xiàn),今年每套型一體機(jī)的價(jià)格比每套型一體機(jī)的價(jià)格多0.6萬元,且用960萬元恰好能購(gòu)買500套型一體機(jī)和200套型一體機(jī).
(1)求今年每套型、型一體機(jī)的價(jià)格各是多少萬元
(2)該市明年計(jì)劃采購(gòu)型、型一體機(jī)1100套,考慮物價(jià)因素,預(yù)計(jì)明年每套型一體機(jī)的價(jià)格比今年上漲25%,每套型一體機(jī)的價(jià)格不變,若購(gòu)買型一體機(jī)的總費(fèi)用不低于購(gòu)買型一體機(jī)的總費(fèi)用,那么該市明年至少需要投入多少萬元才能完成采購(gòu)計(jì)劃?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)是3,BP=CQ,連接AQ、DP交于點(diǎn)O,并分別與邊CD、BC交于點(diǎn)F、E,連接AE,下列結(jié)論:①AQ⊥DP;②OA2=OEOP;③S△AOD<S四邊形OECF;④當(dāng)BP=1時(shí),tan∠OAE=,其中正確結(jié)論的是_____.(請(qǐng)將正確結(jié)論的序號(hào)填寫在橫線上)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)如今,“垃圾分類”意識(shí)已深入人心,垃圾一般可分為:可回收物、廚余垃圾、有害垃圾、其他垃圾. 現(xiàn)有甲、乙二人,其中甲拿了一袋垃圾,乙拿了兩袋垃圾.
(1)直接寫出甲所拿的垃圾恰好是“廚余垃圾”的概率.
(2)用畫樹狀圖或列表的方法求乙所拿的垃圾不同類的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】自我省深化課程改革以來,某校開設(shè)了:A.利用影長(zhǎng)求物體高度,B.制作視力表,C.設(shè)計(jì)遮陽(yáng)棚,D.制作中心對(duì)稱圖形,四類數(shù)學(xué)實(shí)踐活動(dòng)課.規(guī)定每名學(xué)生必選且只能選修一類實(shí)踐活動(dòng)課,學(xué)校對(duì)學(xué)生選修實(shí)踐活動(dòng)課的情況進(jìn)行抽樣調(diào)查,將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖.
根據(jù)圖中信息解決下列問題:
(1)本次共調(diào)查名學(xué)生,扇形統(tǒng)計(jì)圖中B所對(duì)應(yīng)的扇形的圓心角為度;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)選修D類數(shù)學(xué)實(shí)踐活動(dòng)的學(xué)生中有2名女生和2名男生表現(xiàn)出色,現(xiàn)從4人中隨機(jī)抽取2人做校報(bào)設(shè)計(jì),請(qǐng)用列表或畫樹狀圖法求所抽取的兩人恰好是1名女生和1名男生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在,,.點(diǎn)P是平面內(nèi)不與點(diǎn)A,C重合的任意一點(diǎn).連接AP,將線段AP繞點(diǎn)P逆時(shí)針旋轉(zhuǎn)α得到線段DP,連接AD,BD,CP.
(1)觀察猜想
如圖1,當(dāng)時(shí),的值是 ,直線BD與直線CP相交所成的較小角的度數(shù)是 .
(2)類比探究
如圖2,當(dāng)時(shí),請(qǐng)寫出的值及直線BD與直線CP相交所成的小角的度數(shù),并就圖2的情形說明理由.
(3)解決問題
當(dāng)時(shí),若點(diǎn)E,F分別是CA,CB的中點(diǎn),點(diǎn)P在直線EF上,請(qǐng)直接寫出點(diǎn)C,P,D在同一直線上時(shí)的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2018鄭州模擬)如圖,拋物線過點(diǎn),與y軸交于點(diǎn)C.
(1)求該拋物線的解析式;
(2)如圖①,直線l的解析式為,拋物線的對(duì)稱軸與線段BC交于點(diǎn)P,過點(diǎn)P作直線l的垂線,垂足為點(diǎn)H,連接OP,求的面積;
(3)把圖①中的直線向下平移4個(gè)單位長(zhǎng)度得到直線,如圖②,直線與x軸交于點(diǎn)G.點(diǎn)P是四邊形ABCO邊上的一點(diǎn),過點(diǎn)P分別作x軸、直線l的垂線,垂足分別為點(diǎn)E、F.是否存在點(diǎn)P,使得以P、E、F為頂點(diǎn)的三角形是等腰三角形?若存在,直接寫出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com