【題目】如圖,在中,AB是直徑,P為AB上一點(diǎn),過點(diǎn)P作弦MN,°.
(1)若AP=2,BP=6,求MN的長.
(2)若MP=3 ;NP=5,求AB的長
【答案】(1) MN=2;(2)
【解析】
(1)作OH⊥MN于H,連接ON,先計算出OA=4,OP=2,在Rt△POH中,由于∠OPH=45°,可計算出,再在Rt△OHN中,利用勾股定理計算出NH= ,然后根據(jù)垂徑定理由OH⊥MN得到HM=HN,所以MN=2NH= ;
(2)作OH⊥MN于H,連接ON,先計算出HM=HN=4,PH=1,在Rt△POH中,由∠OPH=45°得到OH=1,再在Rt△OHN中利用勾股定理可計算出ON =,所以AB=2ON= .
解:(1)如圖,過點(diǎn)O作OH⊥MN于點(diǎn)H,連接ON,
則MN=2HN,
∵AB是的直徑,AP=2,BP=6,
∴的半徑=
∴OP=4-AP=4-2=2,
∵∠NPB=45 °,
∴是等腰直角三角形,
∴OH=,
在Rt△OHN中,
∴MN= 2HN =2
(2) ∵ OH⊥MN,
∴MH= NH=,
∴PH=HM-PM=4-3=1,
在中,∠NPB=45°.
∴OH=PH=1,
在中,
∴
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下圖為某小區(qū)的兩幢1O層住宅樓,由地面向上依次為第1層、第2層、…、第10層,每層的高度為3m,兩樓間的距離AC=30m.現(xiàn)需了解在某一時段內(nèi),甲樓對乙樓的采光的影響情況.假設(shè)某一時刻甲樓樓頂B落在乙樓的影子長EC=h,太陽光線與水平線的夾角為α.
(1)用含α的式子表示h;
(2)當(dāng)α=30°時,甲樓樓頂B的影子落在乙樓的第幾層?從此時算起,若α每小時增加10°,幾小時后,甲樓的影子剛好不影響乙樓采光.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC中,∠ABC=90°,∠BAC=30°,將△ABC繞點(diǎn)A順時針旋轉(zhuǎn)一定的角度得到△AED,點(diǎn)B、C的對應(yīng)點(diǎn)分別是E、D.
(1)如圖1,當(dāng)點(diǎn)E恰好在AC上時,求∠CDE的度數(shù);
(2)如圖2,若=60°時,點(diǎn)F是邊AC中點(diǎn),求證:四邊形BFDE是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知△ABC的三個頂點(diǎn)的坐標(biāo)分別是A(﹣4,1),B(﹣1,2),C(﹣2,4).
(1)將△ABC向右平移4個單位后得到△A1B1C1,請畫出△A1B1C1,并寫出點(diǎn)B1的坐標(biāo);
(2)△A2B2C2和△A1B1C1關(guān)于原點(diǎn)O中心對稱,請畫出△A2B2C2,并寫出點(diǎn)C2的坐標(biāo);
(3)連接點(diǎn)A和點(diǎn)B2,點(diǎn)B和點(diǎn)A2,得到四邊形AB2A2B,試判斷四邊形AB2A2B的形狀(無須說明理由).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°.點(diǎn)O是AB的中點(diǎn),邊AC=6,將邊長足夠大的三角板的直角頂點(diǎn)放在點(diǎn)O處,將三角板繞點(diǎn)0旋轉(zhuǎn),始終保持三角板的直角邊與AC相交,交點(diǎn)為點(diǎn)E,另條直角邊與BC相交,交點(diǎn)為D,則等腰直角三角板的直角邊被三角板覆蓋部分的兩條線段CD與CE的長度之和為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某課外活動小組準(zhǔn)備圍建一個矩形生物苗圃,其中一邊靠墻,另三邊用長為米的籬笆圍成,已知墻長為米(如圖所示),設(shè)這個苗圃垂直于墻的一邊的長為米.
(1)垂直于墻的一邊邊的長為多少米時,這個苗圃的面積最大,并求出這個最大值;
(2)當(dāng)這個苗圃的面積不小于平方米時,試結(jié)合函數(shù)圖象,直接寫出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形 ABCD 是邊長為 2,一個銳角等于 60°的菱形紙片,將一個∠EDF=60°的三角形紙片的一個頂點(diǎn)與該菱形頂點(diǎn) D 重合,按順時針方向旋轉(zhuǎn)這個三角形紙片,使它的兩邊分別交 CB,BA(或它們的延長線)于點(diǎn) E, F;
①當(dāng) CE=AF 時,如圖①,DE 與 DF 的數(shù)量關(guān)系是 ;
②繼續(xù)旋轉(zhuǎn)三角形紙片,當(dāng) CE≠AF 時,如圖②,(1)的結(jié)論是否成立?若成立,加以證明;若不成立,請說明理由;
③再次旋轉(zhuǎn)三角形紙片,當(dāng)點(diǎn) E,F(xiàn) 分別在 CB,BA 的延長線上時,如圖③, 請直接寫出 DE 與 DF 的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=90°,AB=AC=,點(diǎn)D、E分別在BC、AC上(點(diǎn)D不與點(diǎn)B、C重合),且∠ADE=45°,若△ADE是等腰三角形,則CE=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=x2﹣x﹣6.
(1)畫出函數(shù)的圖象;
(2)觀察圖象,指出方程x2﹣x﹣6=0的解及不等式x2﹣x﹣6>0解集;
(3)求二次函數(shù)的圖象與坐標(biāo)軸的交點(diǎn)所構(gòu)成的三角形的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com