【題目】如圖,以等腰△ABC的一腰AC為直徑作⊙O,交底邊BC于點D,過點D作腰AB的垂線,垂足為E,交AC的延長線于點F.
(1)求證:EF是⊙O的切線;
(2)證明:∠CAD=∠CDF;
(3)若∠F=30°,AD=,求⊙O的面積.
【答案】(1)見解析;(2)見解析;(3)π
【解析】
(1)連接OD,AD,證點D是BC的中點,由三角形中位線定理證OD∥AB,可推出∠ODF=90°,即可得到結論;
(2)由OD=OC得到∠ODC=∠OCD,由∠CAD+∠OCD=90°和∠CDF+∠ODC=90°即可推出∠CAD=∠CDF;
(3)由∠F=30°得到∠DOC=60°,推出∠DAC=30°,在Rt△ADC中,由銳角三角函數可求出AC的長,推出⊙O的半徑,即可求出⊙O的面積.
解:(1)證明:如圖,連接OD,AD,
∵AC是直徑,
∴∠ADC=90°,即AD⊥BC,
又AB=AC,
∴BD=CD,
又AO=CO,
∴OD∥AB,
又FE⊥AB,
∴FE⊥OD,
∴EF是⊙O的切線;
(2)∵OD=OC,
∴∠ODC=∠OCD,
∵∠ADC=∠ODF=90°,
∴∠CAD+∠OCD=90°,∠CDF+∠ODC=90°,
∴∠CAD=∠CDF;
(3)在Rt△ODF中,∠F=30°,
∴∠DOC=90°﹣30°=60°,
∵OA=OD,
∴∠OAD=∠ODA=∠DOC=30°,
在Rt△ADC中,
AC= ==2,
∴r=1,
∴S⊙O=π12=π,
∴⊙O的面積為π.
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,⊙C的半徑為r,P是與圓心C不重合的點,點P關于⊙C的限距點的定義如下:若P′為直線PC與⊙C的一個交點,滿足r≤PP′≤2r,則稱P′為點P關于⊙C的限距點,如圖為點P及其關于⊙C的限距點P′的示意圖.
(1)當⊙O的半徑為1時.
①分別判斷點M(3,4),N(,0),T(1,)關于⊙O的限距點是否存在?若存在,求其坐標;
②點D的坐標為(2,0),DE,DF分別切⊙O于點E,點F,點P在△DEF的邊上.若點P關于⊙O的限距點P′存在,求點P′的橫坐標的取值范圍;
(2)保持(1)中D,E,F三點不變,點P在△DEF的邊上沿E→F→D→E的方向運動,⊙C的圓心C的坐標為(1,0),半徑為r,請從下面兩個問題中任選一個作答.
問題1:若點P關于⊙C的限距點P′存在,且P′隨點P的運動所形成的路徑長為πr,則r的最小值為__________.
問題2:若點P關于⊙C的限距點P′不存在,則r的取值范圍為_________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,Rt△ABC的三個頂點分別是A(﹣3,2),B(0,4),C(0,2).
(1)將△ABC以點C為旋轉中心旋轉180°,畫出旋轉后對應的△A1B1C1,平移△ABC,若點A的對應點A2的坐標為(0,﹣4),畫出平移后對應的△A2B2C2;
(2)若將△A1B1C1繞某一點旋轉可以得到△A2B2C2,請直接寫出旋轉中心的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,方格紙中的每個小方格都是邊長為1個單位長度的正方形,每個小正方形的頂點叫格點,△ABC和△DEF的頂點都在格點上,結合所給的平面直角坐標系解答下列問題:
(1)畫出△ABC向上平移4個單位長度后所得到的△A1B1C1;
(2)畫出△DEF繞點O按順時針方向旋轉90°后所得到的△D1E1F1;
(3)△A1B1C1和△D1E1F1組成的圖形是軸對稱圖形嗎?如果是,請直接寫出對稱軸所在直線的解析式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校數學課外小組,在坐標紙上為某濕地公園的一塊空地設計植樹方案如下:第k棵樹種植在點Pk(xk,yk)處,其中x1=1,y1=1,且k≥2時,,[a]表示非負實數a的整數部分,例如[2.3]=2,,[0.5]=0.按此方案,第2019棵樹種植點的坐標應為( )
A.(6,2020)B.(2019,5)C.(3,403)D.(404,4)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖示,是的直徑,點是半圓上的一動點(不與,重合),弦平分,過點作交射線于點.
(1)求證:與相切:
(2)若,,求長;
(3)若,長記為,長記為,求與之間的函數關系式,并求出的最大值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為測量觀光塔高度,如圖,一人先在附近一樓房的底端A點處觀測觀光塔頂端C處的仰角是60°,然后爬到該樓房頂端B點處觀測觀光塔底部D處的俯角是30°.已知樓房高AB約是45m,請根據以上觀測數據求觀光塔的高.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知直線與兩坐標軸分別交于A、B兩點,拋物線 經過點A、B,點P為直線AB上的一個動點,過P作y軸的平行線與拋物線交于C點, 拋物線與x軸另一個交點為D.
(1)求圖中拋物線的解析式;
(2)當點P在線段AB上運動時,求線段PC的長度的最大值;
(3)在直線AB上是否存在點P,使得以O、A、P、C為頂點的四邊形是平行四邊形?若存在,請求出此時點P 的坐標,若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com