【題目】如圖,二次函數(shù)y=ax2-2ax+3(a≠0)的圖象與x、y軸交于A、B、C三點(diǎn),其中AB=4,連接BC.

(1)求二次函數(shù)的對稱軸和函數(shù)表達(dá)式;

(2)若點(diǎn)M是線段BC上的動點(diǎn),設(shè)點(diǎn)M的橫坐標(biāo)為m,過點(diǎn)M作MN∥y軸交拋物線于點(diǎn)N,求線段MN的最大值.

(3)當(dāng)0≤x≤t,則3≤y≤4,直接寫出t的取值范圍;

【答案】(1)x=1,y=-x2+2x+3;(2)當(dāng)m=時,線段MN的最大值是;(3)1≤t≤2.

【解析】

(1) AB=4,先求函數(shù)對稱軸,再根據(jù)對稱軸得到函數(shù)解析式(2)要求MN的最大值,根據(jù)MN平行y軸得到MN的長度即可得到結(jié)果(3)當(dāng)0≤x≤t,3≤y≤4根據(jù)圖象求出t的范圍.

(1)直線,由軸對稱性可知,A(-1,0)

a=-1

(2)

MN=

當(dāng)m=時,線段MN的最大值是;

(3)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是位于陜西省西安市薦福寺內(nèi)的小雁塔,是中國早期方形密檐式磚塔的典型作品,并作為絲綢之路的一處重要遺址點(diǎn),被列入《世界遺產(chǎn)名錄》.小銘、小希等幾位同學(xué)想利用一些測量工具和所學(xué)的幾何知識測量小雁塔的高度,由于觀測點(diǎn)與小雁塔底部間的距離不易測量,因此經(jīng)過研究需要進(jìn)行兩次測量,于是在陽光下,他們首先利用影長進(jìn)行測量,方法如下:小銘在小雁塔的影子頂端D處豎直立一根木棒CD,并測得此時木棒的影長DE=2.4米;然后,小希在BD的延長線上找出一點(diǎn)F,使得A、C、F三點(diǎn)在同一直線上,并測得DF=2.5米.已知圖中所有點(diǎn)均在同一平面內(nèi),木棒高CD=1.72米,ABBF,CDBF,試根據(jù)以上測量數(shù)據(jù),求小雁塔的高度AB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某水果店出售一種水果,經(jīng)過市場估算,若每個售價為20元時,每周可賣出300個.經(jīng)過市場調(diào)查,如果每個水果每降價1元,每周可多賣出25個,若設(shè)每個水果的售價為x(x<20).

(1)則這一周可賣出這種水果為________(用含x的代數(shù)式表示);

(2)若該周銷售這種水果的收入為6400元,那么每個水果的售價應(yīng)為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知⊙O的直徑為10,點(diǎn)A,點(diǎn)B,點(diǎn)C⊙O上,∠CAB的平分線交⊙O于點(diǎn)D.

(Ⅰ)如圖,若BC⊙O的直徑,AB=6,求AC,BD,CD的長;

(Ⅱ)如圖,若∠CAB=60°,求BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=﹣x2+4x.

(1)寫出二次函數(shù)y=﹣x2+4x圖象的對稱軸;

(2)在給定的平面直角坐標(biāo)系中,畫出這個函數(shù)的圖象(列表、描點(diǎn)、連線);

(3)根據(jù)圖象,寫出當(dāng)y0時,x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線的對稱軸是x=1,與x軸有兩個交點(diǎn),與y軸的交點(diǎn)坐標(biāo)是(0,3),把它向下平移2個單位長度后,得到新的拋物線的解析式是y=ax2+bx+c,以下四個結(jié)論:

b2﹣4ac<0,②abc<0,③4a+2b+c=1,④ab+c>0中,其中正確的是_____(填序號).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AC是⊙O的直徑,弦BDAOE,連接BC,過點(diǎn)OOFBCF,若BD=8cm,AE=2cm,則OF的長度是(  )

A. 3cm B. cm C. 2.5cm D. cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD的邊分別與兩坐標(biāo)軸平行,對角線AC經(jīng)過坐標(biāo)原點(diǎn),點(diǎn)D在反比例函數(shù) (x>0)的圖象上.若點(diǎn)B的坐標(biāo)為(﹣4,﹣4),則k的值為( 。

A. 2 B. 6 C. 23 D. ﹣16

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,若二次函數(shù)y=ax2+bx+c(a≠0)圖象的對稱軸為x=1,與y軸交于點(diǎn)C,與x軸交于點(diǎn)A、點(diǎn)B(﹣1,0),則

①二次函數(shù)的最大值為a+b+c;

a﹣b+c<0;

b2﹣4ac<0;

④當(dāng)y>0時,﹣1<x<3,其中正確的個數(shù)是( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步練習(xí)冊答案