【題目】計(jì)算:
(1)|﹣4|×( ﹣1)0﹣2
(2)解不等式:3x>2(x+1)﹣1.

【答案】
(1)

解:原式=4﹣2=2


(2)

解:去括號(hào)得:3x>2x+2﹣1,

解得:x>1


【解析】(1)原式利用絕對(duì)值的代數(shù)意義,零指數(shù)冪法則計(jì)算即可得到結(jié)果;(2)不等式去括號(hào),移項(xiàng)合并,把x系數(shù)化為1,即可求出解集.此題考查了實(shí)數(shù)的運(yùn)算,以及解一元一次不等式,熟練掌握運(yùn)算法則是解本題的關(guān)鍵.
【考點(diǎn)精析】通過靈活運(yùn)用零指數(shù)冪法則和絕對(duì)值,掌握零次冪和負(fù)整數(shù)指數(shù)冪的意義: a0=1(a≠0);a-p=1/ap(a≠0,p為正整數(shù));正數(shù)的絕對(duì)值是其本身,0的絕對(duì)值是0,負(fù)數(shù)的絕對(duì)值是它的相反數(shù);注意:絕對(duì)值的意義是數(shù)軸上表示某數(shù)的點(diǎn)離開原點(diǎn)的距離即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),PT與⊙O1相切于點(diǎn)T,PAB與⊙O1相交于A、B兩點(diǎn),可證明△PTA∽△PBT,從而有PT2=PAPB.請(qǐng)應(yīng)用以上結(jié)論解決下列問題:如圖(2),PAB、PCD分別與⊙O2相交于A、B、C、D四點(diǎn),已知PA=2,PB=7,PC=3,則CD=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩車從A地將一批物品勻速運(yùn)往B地,甲出發(fā)0.5h后乙開始出發(fā),結(jié)果比甲早1h到達(dá)B地.如圖,線段OP、MN分別表示甲、乙兩車離A地的距離S(km)與時(shí)間t(h)的關(guān)系,a表示A、B兩地之間的距離.請(qǐng)結(jié)合圖中的信息解決如下問題:
(1)分別計(jì)算甲、乙兩車的速度及a的值;
(2)乙車到達(dá)B地后以原速立即返回,請(qǐng)問甲車到達(dá)B地后以多大的速度立即勻速返回,才能與乙車同時(shí)回到A地?并在圖中畫出甲、乙兩車在返回過程中離A地的距離S(km)與時(shí)間t(h)的函數(shù)圖象.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】
(1)計(jì)算:|﹣ |﹣20120﹣sin30°;
(2)化簡(jiǎn):(a﹣b)2+b(2a+b).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知二次函數(shù)y= 的圖象經(jīng)過點(diǎn)A(2,0)和點(diǎn)B(1,﹣ ),直線l經(jīng)過拋物線的頂點(diǎn)且與y軸垂直,垂足為Q.

(1)求該二次函數(shù)的表達(dá)式;
(2)設(shè)拋物線上有一動(dòng)點(diǎn)P從點(diǎn)B處出發(fā)沿拋物線向上運(yùn)動(dòng),其縱坐標(biāo)y1隨時(shí)間t(t≥0)的變化規(guī)律為y1=﹣ +2t.現(xiàn)以線段OP為直徑作⊙C.
①當(dāng)點(diǎn)P在起始位置點(diǎn)B處時(shí),試判斷直線l與⊙C的位置關(guān)系,并說明理由;在點(diǎn)P運(yùn)動(dòng)的過程中,直線l與⊙C是否始終保持這種位置關(guān)系?請(qǐng)說明你的理由.
②若在點(diǎn)P開始運(yùn)動(dòng)的同時(shí),直線l也向上平行移動(dòng),且垂足Q的縱坐標(biāo)y2隨時(shí)間t的變化規(guī)律為y2=﹣1+3t,則當(dāng)t在什么范圍內(nèi)變化時(shí),直線l與⊙C相交?此時(shí),若直線l被⊙C所截得的弦長(zhǎng)為a,試求a2的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們定義:有一組鄰角相等的凸四邊形叫做“等鄰角四邊形”

(1)概念理解:
請(qǐng)你根據(jù)上述定義舉一個(gè)等鄰角四邊形的例子;
(2)問題探究;
如圖1,在等鄰角四邊形ABCD中,∠DAB=∠ABC,AD,BC的中垂線恰好交于AB邊上一點(diǎn)P,連結(jié)AC,BD,試探究AC與BD的數(shù)量關(guān)系,并說明理由;
(3)應(yīng)用拓展;
如圖2,在Rt△ABC與Rt△ABD中,∠C=∠D=90°,BC=BD=3,AB=5,將Rt△ABD繞著點(diǎn)A順時(shí)針旋轉(zhuǎn)角α(0°<∠α<∠BAC)得到Rt△AB′D′(如圖3),當(dāng)凸四邊形AD′BC為等鄰角四邊形時(shí),求出它的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD中,AB=2,AD=1,∠ADC=60°,將ABCD沿過點(diǎn)A的直線l折疊,使點(diǎn)D落到AB邊上的點(diǎn)D′處,折痕交CD邊于點(diǎn)E.
(1)求證:四邊形BCED′是菱形;
(2)若點(diǎn)P時(shí)直線l上的一個(gè)動(dòng)點(diǎn),請(qǐng)計(jì)算PD′+PB的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線C:y=x2﹣3x+m,直線l:y=kx(k>0),當(dāng)k=1時(shí),拋物線C與直線l只有一個(gè)公共點(diǎn).

(1)求m的值;
(2)若直線l與拋物線C交于不同的兩點(diǎn)A,B,直線l與直線l1:y=﹣3x+b交于點(diǎn)P,且 + = ,求b的值;
(3)在(2)的條件下,設(shè)直線l1與y軸交于點(diǎn)Q,問:是否在實(shí)數(shù)k使SAPQ=SBPQ?若存在,求k的值,若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線y=﹣2x+10與x軸,y軸相交于A,B兩點(diǎn),點(diǎn)C的坐標(biāo)是(8,4),連接AC,BC.

(1)求過O,A,C三點(diǎn)的拋物線的解析式,并判斷△ABC的形狀;
(2)動(dòng)點(diǎn)P從點(diǎn)O出發(fā),沿OB以每秒2個(gè)單位長(zhǎng)度的速度向點(diǎn)B運(yùn)動(dòng);同時(shí),動(dòng)點(diǎn)Q從點(diǎn)B出發(fā),沿BC以每秒1個(gè)單位長(zhǎng)度的速度向點(diǎn)C運(yùn)動(dòng).規(guī)定其中一個(gè)動(dòng)點(diǎn)到達(dá)端點(diǎn)時(shí),另一個(gè)動(dòng)點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t秒,當(dāng)t為何值時(shí),PA=QA?
(3)在拋物線的對(duì)稱軸上,是否存在點(diǎn)M,使以A,B,M為頂點(diǎn)的三角形是等腰三角形?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案