【題目】如圖,若一個(gè)半徑為1的圓形紙片在邊長(zhǎng)為6的等邊三角形內(nèi)任意運(yùn)動(dòng),則在該等邊三角形內(nèi),這個(gè)圓形紙片能接觸到的最大面積為_____.
【答案】6+π.
【解析】
根據(jù)直角三角形的面積和扇形面積公式先求出圓形紙片不能接觸到的面積,再用等邊三角形的面積去減即可得能接觸到的最大面積.
解:如圖,
當(dāng)圓形紙片運(yùn)動(dòng)到與∠A的兩邊相切的位置時(shí),
過(guò)圓形紙片的圓心O作兩邊的垂線(xiàn),垂足分別為D,E,
連接AO,
則Rt△ADO中,∠OAD=30°,OD=1,AD=,
∴S△ADO=ODAD=,
∴S四邊形ADOE=2S△ADO=,
∵∠DOE=120°,
∴S扇形DOE=,
∴紙片不能接觸到的部分面積為:
3(﹣)=3﹣π
∵S△ABC=×6×3=9
∴紙片能接觸到的最大面積為:
9﹣3+π=6+π.
故答案為6+π.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為深化課程改革,提高學(xué)生的綜合素質(zhì),我校開(kāi)設(shè)了形式多樣的校本課程.為了解校本課程在學(xué)生中最受歡迎的程度,學(xué)校隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,從A:天文地理;B:科學(xué)探究;C:文史天地;D:趣味數(shù)學(xué);四門(mén)課程中選你喜歡的課程(被調(diào)查者限選一項(xiàng)),并將調(diào)查結(jié)果繪制成兩個(gè)不完整的統(tǒng)計(jì)圖,如圖所示,根據(jù)以上信息,解答下列問(wèn)題:
(1)本次調(diào)查的總?cè)藬?shù)為 人,扇形統(tǒng)計(jì)圖中A部分的圓心角是 度;
(2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)根據(jù)本次調(diào)查,該校400名學(xué)生中,估計(jì)最喜歡“科學(xué)探究”的學(xué)生人數(shù)為多少?
(4)為激發(fā)學(xué)生的學(xué)習(xí)熱情,學(xué)校決定舉辦學(xué)生綜合素質(zhì)大賽,采取“雙人同行,合作共進(jìn)”小組賽形式,比賽題目從上面四個(gè)類(lèi)型的校本課程中產(chǎn)生,并且規(guī)定:同一小組的兩名同學(xué)的題目類(lèi)型不能相同,且每人只能抽取一次,小琳和小金組成了一組,求他們抽到“天文地理”和“趣味數(shù)學(xué)”類(lèi)題目的概率是多少?(請(qǐng)用畫(huà)樹(shù)狀圖或列表的方法求)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)批發(fā)商銷(xiāo)售成本為20元/千克的某產(chǎn)品,根據(jù)物價(jià)部門(mén)規(guī)定:該產(chǎn)品每千克售價(jià)不得超過(guò)90元,在銷(xiāo)售過(guò)程中發(fā)現(xiàn)的售量y(千克)與售價(jià)x(元/千克)滿(mǎn)足一次函數(shù)關(guān)系,對(duì)應(yīng)關(guān)系如下表:
售價(jià)x(元/千克) | … | 50 | 60 | 70 | 80 | … |
銷(xiāo)售量y(千克) | … | 100 | 90 | 80 | 70 | … |
(1)求y與x的函數(shù)關(guān)系式;
(2)該批發(fā)商若想獲得4000元的利潤(rùn),應(yīng)將售價(jià)定為多少元?
(3)該產(chǎn)品每千克售價(jià)為多少元時(shí),批發(fā)商獲得的利潤(rùn)w(元)最大?此時(shí)的最大利潤(rùn)為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)邊長(zhǎng)為60米的正六邊形跑道,P、Q兩人同時(shí)從A處開(kāi)始沿相反方向都跑一圈后停止,P以4米/秒逆時(shí)針?lè)较颉?/span>Q以5米/秒順時(shí)針?lè)较颍?/span>PQ的距離為d米,設(shè)跑步時(shí)間為x秒,令d2=y,
(1)跑道全長(zhǎng)為 米,經(jīng)過(guò) 秒兩人第一次相遇.
(2)當(dāng)P在BC上,Q在EF上時(shí),求y關(guān)于x的函數(shù)解析式;并求相遇前當(dāng)x為多少時(shí),他們之間的距離最大.
(3)直接寫(xiě)出P、Q在整個(gè)運(yùn)動(dòng)過(guò)程中距離最大時(shí)的x的值及最大的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線(xiàn)的解析式是y=x2﹣(k+2)x+2k﹣2.
(1)求證:此拋物線(xiàn)與x軸必有兩個(gè)不同的交點(diǎn);
(2)若拋物線(xiàn)與直線(xiàn)y=x+k2﹣1的一個(gè)交點(diǎn)在y軸上,求該二次函數(shù)的頂點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABCD中,點(diǎn)E是邊AD上一點(diǎn),延長(zhǎng)CE到點(diǎn)F,使∠FBC=∠DCE,且FB與AD相交于點(diǎn)G.
(1)求證:∠D=∠F;
(2)用直尺和圓規(guī)在邊AD上作出一點(diǎn)P,使△BPC∽△CDP,并加以證明.(作圖要求:保留痕跡,不寫(xiě)作法.)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠B=30°,AC=2,E為斜邊AB的中點(diǎn),點(diǎn)P是射線(xiàn)BC上的一個(gè)動(dòng)點(diǎn),連接AP、PE,將△AEP沿著邊PE折疊,折疊后得到△EPA′,當(dāng)折疊后△EPA′與△BEP的重疊部分的面積恰好為△ABP面積的四分之一,則此時(shí)BP的長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一副直角三角板如圖放置,點(diǎn)C在FD的延長(zhǎng)線(xiàn)上,AB∥CF,∠F=∠ACB=90°,∠E=45°,∠A=60°,AC=10,則CD=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,四邊形為正方形,點(diǎn)在軸上,點(diǎn)在軸上,且, ,反比例函數(shù)在第一象限的圖象經(jīng)過(guò)正方形的頂點(diǎn).
(1)求點(diǎn)的坐標(biāo)和反比例函數(shù)的關(guān)系式.
(2)如圖2,將正方形沿軸向右平移 個(gè)單位長(zhǎng)度時(shí),點(diǎn)恰好落在反比例函數(shù)的圖象.
(3)在(2)的情況下,連接并延長(zhǎng),交反比例函數(shù)的圖象于點(diǎn),點(diǎn)是軸上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)、重合)
①當(dāng)點(diǎn)的坐標(biāo)為多少時(shí),四邊形是矩形?請(qǐng)說(shuō)明理由.
②過(guò)點(diǎn)作軸于點(diǎn),請(qǐng)問(wèn)當(dāng)點(diǎn)的坐標(biāo)為多少時(shí),與相似?(直接寫(xiě)出答案).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com