【題目】某公司銷售一種進(jìn)價(jià)為20 (元/個(gè))的計(jì)算器,其銷售量y (萬個(gè))與銷售價(jià)格x (元/個(gè))之間為一次函數(shù)關(guān)系,其變化如下表:

價(jià)格x (元/個(gè))

30

50

銷售量y (萬個(gè))

5

3

同時(shí),銷售過程中的其他開支(不含進(jìn)價(jià))總計(jì)40萬元.若該公司要獲得40萬元的凈利潤(rùn),且盡可能讓顧客得到實(shí)惠,那么銷售價(jià)格應(yīng)定為多少?

(注:凈利潤(rùn)=總銷售額﹣總進(jìn)價(jià)﹣其他開支)

【答案】價(jià)格應(yīng)定為40元.

【解析】

試題分析:設(shè)y與x的解析式為:y=ax+b,將表格中的數(shù)代入解析式,求出a、b的值,求出解析式,然后表示出利潤(rùn),根據(jù)利潤(rùn)為40萬元,求出銷售價(jià)格.

解:設(shè)y與x的解析式為:y=ax+b,

,

解得:,

y=﹣0.1x+8,

根據(jù)題意,得:(x﹣20)(﹣0.1x+8)﹣40=40,

x1=40,x2=60,

盡可能讓顧客得到實(shí)惠,

價(jià)格應(yīng)定為40元.

答:價(jià)格應(yīng)定為40元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于x的方程(2m6x|m2|2=0是一元一次方程,則m= .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)多邊形的內(nèi)角和等于其外角和的3倍,則這個(gè)多邊形是 邊形。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某玩具店用2000元購進(jìn)一批玩具,面市后,供不應(yīng)求,于是店主又購進(jìn)同樣的玩具,所購的數(shù)量是第一批數(shù)量的3倍,但進(jìn)價(jià)貴了4元,結(jié)果購進(jìn)第二批玩具共用了6300元,若兩批玩具的售價(jià)都是120元,且兩批玩具全部售完,求該玩具店銷售這兩批玩具共盈利多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,AB=AC,點(diǎn)D是BC的中點(diǎn),點(diǎn)E是AD上任意一點(diǎn).

(1)如圖1,連接BE、CE,問:BE=CE成立嗎?并說明理由;

(2)如圖2,若BAC=45°,BE的延長(zhǎng)線與AC垂直相交于點(diǎn)F時(shí),問:EF=CF成立嗎?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)問題發(fā)現(xiàn)

如圖1,ACBDCE均為等邊三角形,點(diǎn)A,D,E在同一直線上,連接BE.

填空:①AEB的度數(shù)為 ;②線段AD,BE之間的數(shù)量關(guān)系為

(2)拓展探究

如圖2,ACBDCE均為等腰直角三角形,ACB=DCE=90°,點(diǎn)A,D,E在同一直線上,CM為DCE中DE邊上的高,連接BE,請(qǐng)判斷AEB的度數(shù)及線段CM,AE,BE之間的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某通訊公司推出①、②兩種通訊收費(fèi)方式供用戶選擇,其中一種有月租費(fèi),另一種無月租費(fèi),且兩種收費(fèi)方式的通訊時(shí)間x(分鐘)與收費(fèi)y(元)之間的函數(shù)關(guān)系如圖所示.

(1)有月租費(fèi)的收費(fèi)方式是 (填①或②),月租費(fèi)是 元;

(2)分別求出①、②兩種收費(fèi)方式中y與自變量x之間的函數(shù)關(guān)系式;

(3)請(qǐng)你根據(jù)用戶通訊時(shí)間的多少,給出經(jīng)濟(jì)實(shí)惠的選擇建議.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知ABC中,ab、c分別是∠A、B、C的對(duì)邊,下列條件不能判斷ABC是直角三角形的是(  。

A. a:b:c4:5:6 B. b 2a 2c2 C. ACB D. a3,b=4,c5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】化簡(jiǎn),求值

(1)5x2y+{xy﹣[5x2y﹣(7xy2+xy)]﹣(4x2y+xy)}﹣7xy2,其中x=﹣,y=﹣16.

(2)A=4x2﹣2xy+4y2,B=3x2﹣6xy+3y2,且|x|=3,y2=16,|x+y|=1,求4A+[(2A﹣B)﹣3(A+B)]的值.

(3)如果m﹣3n+4=0,求:(m﹣3n)2+7m3﹣3(2m3n﹣m2n﹣1)+3(m3+2m3n﹣m2n+n)﹣m﹣10m3的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案