【題目】如圖,點P是以O為圓心,AB為直徑的半圓的中點,AB=2,等腰直角三角板45°角的頂點與點P重合,當此三角板繞點P旋轉時,它的斜邊和直角邊所在的直線與直徑AB分別相交于C,D兩點.設線段AD的長為x,線段BC的長為y,則下列圖象中,能表示y與x的函數(shù)關系的圖象大致是( )

A.
B.
C.
D.

【答案】C
【解析】解:如圖,連接AP、BP,
∵點P是以O為圓心,AB為直徑的半圓的中點,
∴∠APB=90°,∠A=∠ABP=45°,
把△ACP繞點P逆時針旋轉90°得到△BPE,
則PC=PE,∠PBE=∠A=45°,
∴∠DBE=∠ABP+∠PBE=45°+45°=90°,
∵∠CPD=45°,
∴∠DPE=∠DPC=45°,
在△PCD和△PED中,
,
∴△PCD≌△PED(SAS),
∴DE=CD,
∵AB=2,AD=x,BC=y,
∴BE=AC=2﹣y,BD=2﹣x,
CD=AB﹣AC﹣BD=2﹣(2﹣y)﹣(2﹣x)=x+y﹣2,
在Rt△DBE中,BD2+BE2=DE2 ,
即(2﹣x)2+(2﹣y)2=(x+y﹣2)2 ,
整理得,y= ,
縱觀各選項,只有C選項圖形符合.
故選C.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,CD為⊙O的直徑,點B在⊙O上,連接BC、BD,過點B的切線AE與CD的延長線交于點A,OE∥BD,交BC于點F,交AE于點E.

(1)求證:△BEF∽△DBC.;
(2)若⊙O的半徑為3,∠C=32°,求BE的長.(精確到0.01)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=x2+bx+c(c>0)與y軸交于點C,頂點為A,拋物線的對稱軸交x軸于點E,交BC于點D,tan∠AOE= .直線OA與拋物線的另一個交點為B.當OC=2AD時,c的值是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABC中,AB=AC,BC=12,B=30°,AB的垂直平分線DEBC邊于點E,AC的垂直平分線MNBC于點N.

(1)求AEN的周長;

(2)求證:BE=EN=NC.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】紙在某謄印社復印文件,復印頁數(shù)不超過時每頁收費元;復印頁數(shù)超過時,超過部分每頁收費元.在某圖書館復印同樣的文件,不論復印多少頁,每頁收費元,如何根據(jù)復印的頁數(shù)選擇復印的地點使總價格比較便宜?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,菱形紙片ABCD中,∠A=60°,將紙片折疊,點A、D分別落在A′、D′處,且A′D′經(jīng)過B,EF為折痕,當D′F⊥CD時, 的值為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】請根據(jù)圖示的對話解答下列問題.

求:(1)a,b的值;

(2)8﹣a+b﹣c的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一個不透明的袋子中裝有20個球,其中紅球6個,白球和黑球若干個,每個球除顏色外完全相同.

(1)小明通過大量重復試驗(每次將球攪勻后,任意摸出一個球,記下顏色后放回)發(fā)現(xiàn),摸出的黑球的頻率在0.4附近擺動,請你估計袋中黑球的個數(shù).

(2)若小明摸出的第一個球是白球,不放回,從袋中余下的球中再任意摸出一個球,摸出白球的概率是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,E、F分別是邊ABCD上的點,AE=CF,連接EF,BF,EF與對角線AC交于O點,且BE=BF,∠BEF=2∠BAC

1)求證:OE=OF;

2)若BC=,求AB的長。

查看答案和解析>>

同步練習冊答案