【題目】“發(fā)展臍橙產(chǎn)業(yè),加快脫貧的步伐”.某臍橙種植戶新鮮采摘了20筐臍橙,以每筐25千克為標準重量,超過或不足干克數(shù)分別用正,負數(shù)來表示,記錄如下:
與標準重量的差值(單位:干克) | -3 | -2 | -1.5 | 0 | 1 | 2.5 |
筐數(shù) | 1 | 4 | 2 | 3 | 2 | 8 |
(1)與標準重量比較,20筐臍橙總計超過或不足多少千克?
(2)若臍橙毎干克售價6.5元,則出售這20筐臍橙可獲得多少元?
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線l1:y=﹣x與反比例函數(shù)y=的圖象交于A,B兩點(點A在點B左側(cè)),已知A點的縱坐標是2:
(1)求反比例函數(shù)的表達式;
(2)將直線l1:y=﹣x向上平移后的直線l2與反比例函數(shù)y=在第二象限內(nèi)交于點C,如果△ABC的面積為30,求平移后的直線l2的函數(shù)表達式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在ABCD中,AB=8,BC=5,以點A為圓心,以任意長為半徑作弧,分別交AD、AB于點P、Q,再分別以P、Q為圓心,以大于PQ的長為半徑作弧,兩弧在∠DAB內(nèi)交于點M,連接AM并延長交CD于點E,則CE的長為( 。
A. 3B. 5C. 2D. 6.5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,等邊三角形ABC的邊長為5,點P在線段AB上,點D在線段BC上,且△PDE是等邊三角形.
(1)初步嘗試:若點P與點A重合時(如圖1),BD+BE= .
(2)類比探究:將點P沿AB方向移動,使AP=1,其余條件不變(如圖2),試計算BD+BE的值是多少?
(3)拓展遷移:如圖3,在△ABC中,AB=AC,∠BAC=70°,點P在線段AB的延長線上,點D在線段CB的延長線上,在△PDE中,PD=PE,∠DPE=70°,設BP=a,請直接寫出線段BD、BE之間的數(shù)量關系(用含a的式子表示)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】先閱讀下列解題過程,然后解答問題(1)、(2)
解方程:|x+3|=2.
當x+30時,原方程可化為:x+3=2,解得x=1;
當x+3<0時,原方程可化為:x+3=2,解得x=5.
所以原方程的解是x=1,x=5.
(1)解方程:|3x1|5=0;
(2)探究:當b為何值時,方程|x2|=b+1①無解;②只有一個解;③有兩個解.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲騎自行車從A地到B地,乙騎自行車從B地到A地兩人都均速前進,已知兩人在上午8點同時出發(fā),到上午10時,兩人還相距36千米,到中午12時,兩人又相距36千米.
(1)列方程,求A、B兩地間的路程.
(2)請指出在解答時利用的等量關系是什么?
(3)請你利用其它的等量關系再列出方程.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是圓O的直徑,射線AM⊥AB,點D在AM上,連接OD交圓O于點E,過點D作DC=DA交圓O于點C(A、C不重合),連接OC、BC、CE.
(1)求證:CD是⊙O的切線;
(2)若圓O的直徑等于2,填空:
①當AD= 時,四邊形OADC是正方形;
②當AD= 時,四邊形OECB是菱形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,E是對角線BD上一點,且滿足=AD,連接CE并延長交AD于點F,連接AE,過點B作于點G,延長BG交AD于點H.在下列結(jié)論中:①;②;③ . 其中不正確的結(jié)論有( )
A. 0個B. 1個C. 2個D. 3個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在等邊三角形ABC中,BC=6cm,射線AG∥BC,點E從點A出發(fā)沿射線AG以lcm/s的速度運動,同時點F從點B出發(fā)沿射線BC以2cm/s的速度運動,設運動時間為t(s).
(1)連接EF,當EF經(jīng)過AC邊的中點D時,試判定四邊形AFCE的形狀并說明理由;
(2)當t為多少時,四邊形ACFE是菱形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com