【題目】在平面直角坐標(biāo)系中,直線)與直線相交于點P2,m),與x軸交于點A

1)求m的值;

2)過點PPBx軸于B,如果△PAB的面積為6,求k的值.

【答案】1m=4;(2

【解析】

1)把點P2m)代入直線y=2x可求m的值;

2)先求得PB=4,根據(jù)三角形面積公式可求AB=3,可得A150),A2-1,0),再根據(jù)待定系數(shù)法可求k的值.

1)∵ 直線過點P2,m),∴ m=4

2)∵ P2,4),∴ PB=4

又∵ PAB的面積為6

AB=3.∴ A15,0),A2(-10

當(dāng)直線經(jīng)過A15,0)和P2,4)時,

可得k=

當(dāng)直線經(jīng)過A2(-1,0)和P2,4)時,

可得k=.

綜上所述,k=.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,ABAC,點P是邊BC上的中點,PDAB,PEAC,垂足分別為點D、E

1)求證:PDPE;

2)若AB6cm,∠BAC30°,請直接寫出PD+PE   cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】個棱長為(單位:)的正方體,擺成的大正方體(如圖),從上面、正面、左面看到的大正方體的正投影圖都是如圖,是的正方形.

(1)如果將圖中,左前方的個正方體和右后方的個正方體取走,就變成圖.這時從正面、左面、上面看的正投影圖依次是圖中的________;

(2)在圖中,至少要補(bǔ)防________個正方體后,組成的立體圖形,從上面看的正投影圖是圖②.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩臺機(jī)器共同加工一批零件,一共用了小時.在加工過程中乙機(jī)器因故障停止工作,排除故障后,乙機(jī)器提高了工作效率且保持不變,繼續(xù)加工.甲機(jī)器在加工過程中工作效率保持不變.甲、乙兩臺機(jī)器加工零件的總數(shù)(個)與甲加工時間之間的函數(shù)圖象為折線,如圖所示.

1)這批零件一共有   個,甲機(jī)器每小時加工   個零件,乙機(jī)器排除故障后每小時加工   個零件;

2)當(dāng)時,求之間的函數(shù)解析式;

3)在整個加工過程中,甲加工多長時間時,甲與乙加工的零件個數(shù)相等?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場一種商品的進(jìn)價為每件30元,售價為每件40元.每天可以銷售48件,為盡快減少庫存,商場決定降價促銷.

(1)若該商品連續(xù)兩次下調(diào)相同的百分率后售價降至每件32.4元,求兩次下降的百分率;

(2)經(jīng)調(diào)查,若每降價0.5元,每天可多銷售4件,那么每天要想獲得510元的利潤,每件應(yīng)降價多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,等腰△ABC,ABAC,∠BAC120°,ADBC于點D,點PBA延長線上一點,點O是線段AD上一點,OPOC,下列結(jié)論:①AC平分∠PADAPO=∠DCO;OPC是等邊三角形;④ACAO+AP;其中正確的序號是( 。

A.①③④B.②③C.①②④D.①③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖在直角坐標(biāo)系中,四邊形ABCO為正方形,A點的坐標(biāo)為(a0),D點的坐標(biāo)為(0,b),且a,b滿足(a32+|b|0

1)求A點和D點的坐標(biāo);

2)若∠DAEOAB,請猜想DE,ODEB的數(shù)量關(guān)系,說明理由.

3)若∠OAD30°,以AD為三角形的一邊,坐標(biāo)軸上是否存在點P,使得△PAD為等腰三角形,若存在,直接寫出有多少個點P,并寫出P點的坐標(biāo),選擇一種情況證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠ACB90°,點D、E分別是ACAB的中點,點FBC的延長線上,且∠CDF=∠A

1)求證:四邊形DECF是平行四邊形;

2)若∠A30°,寫出圖中所有與FD長度相等的線段.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點為定點,定直線上一動點,點分別為的中點,對于下列各值:①線段的長;②的周長;③的面積;④的大。渲须S點的移動不會變化的是(

A.①②B.①③C.①④D.②④

查看答案和解析>>

同步練習(xí)冊答案