【題目】如圖,在等腰直角△ABC中,B90°,以點(diǎn)A為圓心任意長(zhǎng)為半徑畫弧,與AB,AC分別交于點(diǎn)M,N,分別以點(diǎn)M,N為圓心大于長(zhǎng)為半徑畫弧,兩弧交于點(diǎn)P,且點(diǎn)P剛好落在邊BC上,AB10cm,下列說(shuō)法中:

ABAD;②AP平分∠BAC;③△PDC的周長(zhǎng)是;④ANND;

正確的是( ).

A.①②③B.①②④C.①③④D.②③④

【答案】A

【解析】

根據(jù)角平分線做法得出AP平分∠BAC,進(jìn)而結(jié)合全等三角形的判定與性質(zhì)以及結(jié)合等腰直角三角形的性質(zhì)分別判斷得出答案.

解:由題意可得:AP平分BAC,則

ABPADP

,

∴△ABP≌△ADPAAS),

ABAD,故正確;

由角平分線的做法可得AP平分BAC,故此選項(xiàng)正確;

等腰直角ABC,

∴∠C45°,則PDC是等腰直角三角形,

DPDCDP,

∴③△PDC的周長(zhǎng)是:,故此選項(xiàng)正確.

故選:A

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知yx的二次函數(shù),該函數(shù)的圖象經(jīng)過(guò)點(diǎn)A(0,5)、B(1,2)、C(32)

1)求該二次函數(shù)的表達(dá)式,畫出它的大致圖象并標(biāo)注頂點(diǎn)及其坐標(biāo);

2)結(jié)合圖象,回答下列問(wèn)題:

①當(dāng)1≤x≤4時(shí),y的取值范圍是   ;

②當(dāng)m≤x≤m+3時(shí),求y的最大值(用含m的代數(shù)式表示);

③是否存在實(shí)數(shù)mnm≠n),使得當(dāng)m≤x≤n時(shí),m≤y≤n?若存在,請(qǐng)求出m、n;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)第一次用11000元購(gòu)進(jìn)某款拼裝機(jī)器人進(jìn)行銷售,很快銷售一空,商家又用24000元第二次購(gòu)進(jìn)同款機(jī)器人,所購(gòu)進(jìn)數(shù)量是第一次的2倍,但單價(jià)貴了10元.

1)求該商家第一次購(gòu)進(jìn)機(jī)器人多少個(gè)?

2)若在這兩次機(jī)器人的銷售中,該商場(chǎng)全部售完,而且售價(jià)都是130元,問(wèn)該商場(chǎng)總共獲利多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】問(wèn)題:如圖(1),點(diǎn)EF分別在正方形ABCD的邊BC、CD上,∠EAF=45°試判斷BEEF、FD之間的數(shù)量關(guān)系.

【發(fā)現(xiàn)證明】小聰把ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°ADG,從而發(fā)現(xiàn)EF=BE+FD,請(qǐng)你利用圖(1)證明上述結(jié)論.

【類比引申】如圖(2),四邊形ABCD中,∠BAD≠90°,AB=AD,B+D=180°,點(diǎn)E、F分別在邊BC、CD上,則當(dāng)∠EAF與∠BAD滿足  關(guān)系時(shí),仍有EF=BE+FD請(qǐng)證明你的結(jié)論.

【探究應(yīng)用】如圖(3),在某公園的同一水平面上,四條通道圍成四邊形ABCD.已知AB=AD=80米,∠B=60°,ADC=120°,BAD=150°,道路BC、CD上分別有景點(diǎn)EF,且AEAD,DF=401米,現(xiàn)要在E、F之間修一條筆直道路,求這條道路EF的長(zhǎng).(結(jié)果取整數(shù),參考數(shù)據(jù): =1.41, =1.73

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某超市銷售一種商品,成本每千克40元,規(guī)定每千克售價(jià)不低于成本,且不高于80元,經(jīng)市場(chǎng)調(diào)查,每天的銷售量y(千克)與每千克售價(jià)x(元)滿足一次函數(shù)關(guān)系,部分?jǐn)?shù)據(jù)如下表:

售價(jià)x(元/千克)

50

60

70

銷售量y(千克)

100

80

60

1)求yx之間的函數(shù)表達(dá)式;

2)設(shè)商品每天的總利潤(rùn)為W(元),則當(dāng)售價(jià)x定為多少元時(shí),廠商每天能獲得最大利潤(rùn)?最大利潤(rùn)是多少?

3)如果超市要獲得每天不低于1350元的利潤(rùn),且符合超市自己的規(guī)定,那么該商品每千克售價(jià)的取值范圍是多少?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是一垂直于水平面的建筑物,某同學(xué)從建筑物底端B出發(fā),先沿水平方向向右行走20米到達(dá)點(diǎn)C,再經(jīng)過(guò)一段坡度(或坡比)為i10.75、坡長(zhǎng)為10米的斜坡CD到達(dá)點(diǎn)D,然后再沿水平方向向右行走40米到達(dá)點(diǎn)EA,BC,DE均在同一平面內(nèi)),在E處處測(cè)得建筑物頂端A的仰角為24°,則建筑物AB的高度約為__米.(參考數(shù)據(jù):sin24°≈0.41,cos24°≈0.91,tan24°≈0.45

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知,,以為直徑的圓交于點(diǎn),過(guò)點(diǎn)的⊙的切線交于點(diǎn),則⊙的半徑是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為倡導(dǎo)健康環(huán)保,自帶水杯已成為一種好習(xí)慣,某超市銷售甲,乙兩種型號(hào)水杯,進(jìn)價(jià)和售價(jià)均保持不變,其中甲種型號(hào)水杯進(jìn)價(jià)為25/個(gè),乙種型號(hào)水杯進(jìn)價(jià)為45/個(gè),下表是前兩月兩種型號(hào)水杯的銷售情況:

時(shí)間

銷售數(shù)量(個(gè))

銷售收入(元)(銷售收入=售價(jià)×銷售數(shù)量)

甲種型號(hào)

乙種型號(hào)

第一月

22

8

1100

第二月

38

24

2460

1)求甲、乙兩種型號(hào)水杯的售價(jià);

2)第三月超市計(jì)劃再購(gòu)進(jìn)甲、乙兩種型號(hào)水杯共80個(gè),這批水杯進(jìn)貨的預(yù)算成本不超過(guò)2600元,且甲種型號(hào)水杯最多購(gòu)進(jìn)55個(gè),在80個(gè)水杯全部售完的情況下設(shè)購(gòu)進(jìn)甲種號(hào)水杯a個(gè),利潤(rùn)為w元,寫出wa的函數(shù)關(guān)系式,并求出第三月的最大利潤(rùn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠MON =ACB = 90°,AC = BC,AB =5,ABC頂點(diǎn)A、C分別在ON、OM上,點(diǎn)DAB邊上的中點(diǎn),當(dāng)點(diǎn)A在邊ON上運(yùn)動(dòng)時(shí),點(diǎn)C隨之在邊OM上運(yùn)動(dòng),則OD的最大值為_____

查看答案和解析>>

同步練習(xí)冊(cè)答案