【題目】-5+(-9)-15=.

【答案】-29
【解析】原式=-14+(-15)=-29
【考點(diǎn)精析】掌握有理數(shù)的加減混合運(yùn)算是解答本題的根本,需要知道混合運(yùn)算法則:先乘方,后乘除,最后加減.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】-2-(-3)+(-7)=( )
A.5
B.3
C.2
D.-6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合題
(1)如圖①,若∠B+∠D=∠BED,試猜想AB與CD的位置關(guān)系,并說明理由。
(2)如圖②,要想得到AB∥CD,則∠1、∠2、∠3之間應(yīng)滿足怎樣的位置關(guān)系?請(qǐng)?zhí)剿鳌?/span>

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有理數(shù)的加減混合運(yùn)算一般遵循運(yùn)算順序.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=12cm,BC=6cm,點(diǎn)P沿AB邊從點(diǎn)A開始向點(diǎn)B以2cm/秒的速度移動(dòng);點(diǎn)Q沿DA邊從點(diǎn)D開始向點(diǎn)A以1cm/秒的速度移動(dòng),如果P、Q同時(shí)出發(fā),用t(秒)表示移動(dòng)的時(shí)間(0<t<6).
(1)當(dāng)t為何值時(shí),△PBC為等腰直角三角形?
(2)求當(dāng)移動(dòng)到△QAP為等腰直角三角形時(shí)斜邊QP的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】探究歸納題:

(1)試驗(yàn)分析:
如圖1,經(jīng)過A點(diǎn)與B、C兩點(diǎn)分別作直線,可以作條;同樣,經(jīng)過B點(diǎn)與A、C兩點(diǎn)分別作直線,可以作條;經(jīng)過C點(diǎn)與A、B兩點(diǎn)分別作直線,可以作條.
通過以上分析和總結(jié),圖1共有條直線.
(2)拓展延伸:
運(yùn)用(1)的分析方法,可得:
圖2共有條直線;
圖3共有條直線;
(3)探索歸納:
如果平面上有n(n≥3)個(gè)點(diǎn),且每3個(gè)點(diǎn)均不在同一直線上,經(jīng)過其中兩點(diǎn)共有條直線.(用含n的式子表示)
(4)解決問題:
中職籃(CBA)2017——2018賽季作出重大改革,比賽隊(duì)伍數(shù)擴(kuò)充為20支,截止2017年12月21日賽程過半,即每兩隊(duì)之間都賽了一場(chǎng),請(qǐng)你幫助計(jì)算一下一共進(jìn)行了多少場(chǎng)比賽?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知RtABC中,B=90°,AC=20,AB=10,P是邊AC上一點(diǎn)(不包括端點(diǎn)A、C),過點(diǎn)P作PEBC于點(diǎn)E,過點(diǎn)E作EFAC,交AB于點(diǎn)F.設(shè)PC=x,PE=y.

(1)求y與x的函數(shù)關(guān)系式;

(2)是否存在點(diǎn)P使PEF是Rt?若存在,求此時(shí)的x的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列結(jié)論正確的有( )個(gè):
① 規(guī)定了原點(diǎn),正方向和單位長度的直線叫數(shù)軸 ② 最小的整數(shù)是0 ③ 正數(shù),負(fù)數(shù)和零統(tǒng)稱有理數(shù) ④ 數(shù)軸上的點(diǎn)都表示有理數(shù)
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,直線BD分別交射線AE、CF于點(diǎn)B、D,連接A、D和B、C,∠1+∠2=180°,∠A=∠C,AD平分∠BDF,求證:
(1)AD∥BC;
(2)BC平分∠DBE.

查看答案和解析>>

同步練習(xí)冊(cè)答案