如圖,在平行四邊形ABCD中,AB=4a,E是BC的中點,BE=2a,∠BAD=120°,P是BD上的動點,則PE+PC的最小值為              .
 

試題分析:根據(jù)菱形的判定,得出平行四邊形ABCD為菱形,作出E關(guān)于BD的對稱點E′,轉(zhuǎn)化為線段長度的問題,再根據(jù)等邊三角形的性質(zhì)判斷出△BCE′為直角三角形,利用勾股定理即可求出CE′的長.
 
∵E是BC的中點,BE=2a,
∴BC=2BE=2×2a=4a,
故BC=AC,
∴平行四邊形ABCD為菱形.
∴∠ABD=∠CBD,
∴BD是∠ABC的平分線.
作E關(guān)BD的對稱點E′,
連接CE′,PE,
則PE=PE′,
此時,PE+PC=PE′+PC=CE′,
CE′即為PE+PC的最小值.
∵∠A=120°,
∴∠ABD=∠ADB=30°,
∴∠ABC=60°,
又∵BE′=BE,
∴△E′BE為正三角形,EE′=2a,∠ABE=60°,
故EE′=EC,
∠EE′C=∠ECE′=30°,
∴∠BE′C=60°+30°=90°,
在Rt△BCE′中,

點評:本題綜合性較強,難度較大,是中考中比較常見的知識點,一般難度不大,需熟練掌握.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,順次連結(jié)四邊形ABCD四邊的中點E、F、G、H,則四邊形EFGH的形狀一定是    

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

在矩形ABCD中,將點A翻折到對角線BD上的點M處,折痕BE交AD于點E.將點C翻折到對角線BD上的點N處,折痕DF交BC于點F.

(1)求證:四邊形BFDE為平行四邊形;
(2)若四邊形BFDE為菱形,且AB=2,求BC的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖a,ABCD是長方形紙帶,∠DEF=23°,將紙帶沿EF折疊成圖b,再沿BF折疊成圖c,則圖c中的∠CFE的度數(shù)是_________°.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,把一個長方形的紙片對折兩次,然后剪下一個角,為了得到一個鈍角為120° 的菱形,剪口與第二次折痕所成角的度數(shù)應為
A.15°或30° B.30°或45°C.45°或60°D.30°或60°

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖已知四邊形ABCD是平行四邊形,AC與BD相交于O點,且BC⊥AC,AB=8,∠ABC=30°,

(1)求AD和BD的長;
(2)求平行四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,四邊形ABCD是菱形,對角線AC與BD相交于O,AB=5,AO=4,求BD的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

設邊長為3的正方形的對角線長為a,下列關(guān)于a的四種說法:① a是無理數(shù);② a可以用數(shù)軸上的一個點來表示;③ 3<a<4;④ a是18的算術(shù)平方根。其中,所有正確說法的序號是
A.①④B.②③C.①②④D.①③④

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如下圖(1),已知小正方形ABCD的面積為1,把它的各邊延長一倍得到新正方形A1B1C1D1;把正方形A1B1C1D1邊長按原法延長一倍得到新正方形A2B2C2D2(如圖(2));以此下去,則正方形的面積為         

查看答案和解析>>

同步練習冊答案