【題目】如圖,△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于點(diǎn)D,DE⊥AB,垂足為E,且AB=6cm,則△DEB的周長(zhǎng)為( )
A.4cm B.6cm C.8cm D.10cm
【答案】B
【解析】
試題分析:先利用AAS判定△ACD≌△AED得出AC=AE,CD=DE;再對(duì)構(gòu)成△DEB的幾條邊進(jìn)行變換,可得到其周長(zhǎng)等于AB的長(zhǎng).
解:∵AD平分∠CAB交BC于點(diǎn)D
∴∠CAD=∠EAD
∵DE⊥AB
∴∠AED=∠C=90
∵AD=AD
∴△ACD≌△AED.(AAS)
∴AC=AE,CD=DE
∵∠C=90°,AC=BC
∴∠B=45°
∴DE=BE
∵AC=BC,AB=6cm,
∴2BC2=AB2,即BC===3,
∴BE=AB﹣AE=AB﹣AC=6﹣3,
∴BC+BE=3+6﹣3=6cm,
∵△DEB的周長(zhǎng)=DE+DB+BE=BC+BE=6(cm).
另法:證明三角形全等后,
∴AC=AE,CD=DE.
∵AC=BC,
∴BC=AE.
∴△DEB的周長(zhǎng)=DB+DE+EB=DB+CD+EB=CB+BE=AE+BE=6cm.
故選B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知∠AOB=90°,∠COD=30°.
(1)如圖1,當(dāng)點(diǎn)O、A、C在同一條直線上時(shí),∠BOD的度數(shù)是 ;
(2)將∠COD從圖1的位置開(kāi)始,繞點(diǎn)O逆時(shí)針?lè)较蛐D(zhuǎn)n°(即∠AOC=n°),且0<n<180.
①如果∠COD的一邊與∠AOB的一邊垂直,則n= .
②當(dāng)60<n<90時(shí)(如圖2),作射線OM平分∠AOC,射線ON平分∠BOD,試求∠MON的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】地球上的海洋面積為361 000 000平方千米,數(shù)字361 000 000用科學(xué)記數(shù)法表示為( )
A.36.1×107 B.0.361×109 C.3.61×108 D.3.61×107
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】先閱讀下面的內(nèi)容,再解決問(wèn)題,
例題:若m2+2mn+2n2﹣6n+9=0,求m和n的值.
解:∵m2+2mn+2n2﹣6n+9=0
∴m2+2mn+n2+n2﹣6n+9=0
∴(m+n)2+(n﹣3)2=0
∴m+n=0,n﹣3=0
∴m=﹣3,n=3
問(wèn)題(1)若x2+2y2﹣2xy+4y+4=0,求xy的值.
(2)已知a,b,c是△ABC的三邊長(zhǎng),滿足a2+b2=10a+8b﹣41,且c是△ABC中最長(zhǎng)的邊,求c的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AB=AC,AD⊥BC,CE⊥AB,AE=CE.求證:
(1)△AEF≌△CEB;
(2)AF=2CD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某蔬菜基地三天的總產(chǎn)量是8390千克,第二天比第一天多產(chǎn)560千克,第三天比第一天的多1200千克.問(wèn)三天各產(chǎn)多少千克蔬菜?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算:
(1);
(2);
(3);
(4);
(5);
(6)(結(jié)果保留3個(gè)有效數(shù)字)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列三角形中,可以構(gòu)成直角三角形的有( )
A. 三邊長(zhǎng)分別為2,2,3 B. 三邊長(zhǎng)分別為3,3,5
C. 三邊長(zhǎng)分別為4,5,6 D. 三邊長(zhǎng)分別為1.5,2,2.5
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com