【題目】如圖,點P是平行四邊形ABCD對角線BD上的動點,點MAD的中點,已知AD=8,AB=10,ABD=45°,把平行四邊形ABCD繞著點A按逆時針方向旋轉,點P的對應點是點Q,則線段MQ的長度的最大值與最小值的差為__

【答案】18﹣5

【解析】

AP1BD垂足為P1,當AP1旋轉到與射線AD重合時(點P1與點E重合),ME就是MQ最小值;當點P2B重合時,旋轉到與DA的延長線重合時(點P2與點F重合),此時MF就是MQ最大值,分別求出MQ的最大值與最小值即可得解.

如圖作AP1BD垂足為P1,∵DBA45°,AB10,∴∠P1AB=∠DBA45°,AP1P1B5,∵AMMDAD4,當AP1旋轉到與射線AD重合時(點P1與點E重合),ME就是MQ最小值=54,當點P2B重合時,旋轉到與DA的延長線重合時(點P2與點F重合),此時MF就是MQ最大值=AMAFAMAB41014,∴MQ的最大值與最小值的差=14-(54)=185,故答案為185.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一塊直角三角形的紙片,兩直角邊AC=6cm,BC=8cm,現(xiàn)將直角邊AC沿直線AD折疊,使它落在斜邊AB上,且與AE重合,則CD等于(   .

A. 2 cm B. 4 cm C. 3 cm D. 5 cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,雙曲線(x>0)上有一點A(1,5),過點A的直線y=mx+nx軸交于點C(6,0).

(1)求反比例函數(shù)和一次函數(shù)的解析式;

(2)連接OA、OB,求AOB的面積;

(3)根據(jù)圖象直接寫出在第一象限內反比例函數(shù)值大于一次函數(shù)值時x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠B=90°,AC=60cm,∠A=60°,點D從點C出發(fā)沿CA方向以4cm/秒的速度向點A勻速運動,同時點E從點A出發(fā)沿AB方向以2cm/秒的速度向點B勻速運動,當其中一個點到達終點時,另一個點也隨之停止運動.設點D、E運動的時間是t秒(0t≤15).過點DDFBC于點F,連接DE,EF

1)求證:AE=DF;

2)四邊形AEFD能夠成為菱形嗎?如果能,求出t的值,如果不能,說明理由;

3)在運動過程中,四邊形BEDF能否為正方形?若能,求出t的值;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知△ABC內接于⊙O,AD、AE分別平分∠BAC和△BAC的外角∠BAF,且分別交圓于點D、F,連接DE,CD,DE與BC相交于點G.

(1)求證:DE是△ABC的外接圓的直徑;

(2)設OG=3,CD=,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,將△ABC沿直線MN翻折后,頂點C恰好落在邊AB上的點D處,已知MN∥AB,MC=6,NC=2,則四邊形MABN的面積是___________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某公司經(jīng)營甲、乙兩種商品,兩種商品的進價和售價情況如下表:

進價(萬元/)

售價(萬元/)

12

14.5

8

10

兩種商品的進價和售價始終保持不變.現(xiàn)準備購進甲、乙兩種商品共20件.設購進甲種商品件,兩種商品全部售出可獲得利潤為萬元.

1的函數(shù)關系式為__________________

2)若購進兩種商品所用的資金不多于200萬元,則該公司最多購進多少合甲種商品?

3)在(2)的條件下,請你幫該公司設計一種進貨方案,使得該公司獲得最大利潤,并求出最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的邊長為3,延長CB至點M,使SABM=,過點BBNAM,垂足為N,O是對角線AC,BD的交點,連接ON,則ON的長為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將矩形(長方形)ABCD沿EF折疊,使點B與點D重合,點A落在G處,連接BE,DF,則下列結論:①DE=DF,②FB=FE,③BE=DF,④B、E、G三點在同一直線上,其中正確的是(

A.①②③B.①③④C.②③④D.①②④

查看答案和解析>>

同步練習冊答案