【題目】某數(shù)學興趣小組用高為1.2米的測角儀測量小樹AB的高度,如圖,在距AB一定距離的F處測得小樹頂部A的仰角為50°,沿BF方向行走3.5米到G處時,又測得小樹頂部A的仰角為27°,求小樹AB的高度.(參考數(shù)據(jù):sin27°=0.45,cos27°=0.89,tan27°=0.5,sin50°=0.77,cos50°=0.64,tan50°=1.2)
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,△ABC為Rt△,∠ACB=90°,點D為AB的中點,點E為邊AC上的點,連結(jié)DE,過點E作EF⊥ED交BC于F,以DE,EF為鄰邊作矩形DEFG,已知AC=8.
(1)如圖1所示,當BC=6,點G在邊AB上時,求DE的長.
(2)如圖2所示,若,點G在邊BC上時,求BC的長.
(3)①若,且點G恰好落在Rt△ABC的邊上,求BC的長.
②若(n為正整數(shù)),且點G恰好落在Rt△ABC的邊上,請直接寫出BC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c與x軸交于點A(﹣1,0),B(3,0),與y軸交于點C.點D是直線BC上方拋物線上一動點.
(1)求拋物線的解析式;
(2)如圖1,連接BD、CD,設(shè)點D的橫坐標為m,△BCD的面積為s.試求出s與m的函數(shù)關(guān)系式,并求出s的最大值;
(3)如圖2,設(shè)AB的中點為E,作DF⊥BC,垂足為F,連接CD、CE,是否存在點D,使得以C、D,F三點為頂點的三角形與△CEO相似?若存在,請直接寫出點D的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)的圖象交于A(m,6),B(3,n)兩點.
(1)求一次函數(shù)的解析式;
(2)根據(jù)圖象直接寫出的x的取值范圍;
(3)求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在等腰直角△ABC中,∠ACB=90°,CO⊥AB于點O,點D、E分別在邊AC、BC上,且AD=CE,連結(jié)DE交CO于點P,給出以下結(jié)論:
①△DOE是等腰直角三角形;②∠CDE=∠COE;③若AC=1,則四邊形CEOD的面積為;④,其中所有正確結(jié)論的序號是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,平面內(nèi)有一點P到△ABC的三個頂點的距離分別為PA、PB、PC,若有,則稱點P為關(guān)于點A的勾股點.矩形ABCD中,AB=5,BC=6,E是矩形ABCD內(nèi)一點,且點C是關(guān)于點A的勾股點,若是△ADE等腰三角形,求AE的長為_______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=30°,AB=4,D,F分別是AC,BC的中點,等腰直角三角形DEH的邊DE經(jīng)過點F,EH交BC于點G,且DF=2EF,則CG的長為( 。
A. 2B. 2﹣1C. D. +1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知如圖,M、N是△ABC的BC邊上兩點,且AB=AC,BM=CN
(1)如圖1,證明:△ABN≌△ACM;
(2)如圖2,當∠ANB=2∠B時,直接寫出圖中所有等腰三角形(△ABC除外)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】定義:平面內(nèi),如果一個四邊形的四個頂點到某一點的距離都相等,則稱這一點為該四邊形的外心.
(1)下列四邊形:平行四邊形、矩形、菱形中,一定有外心的是 ;
(2)已知四邊形ABCD有外心O,且A,B,C三點的位置如圖1所示,請用尺規(guī)確定該四邊形的外心,并畫出一個滿足條件的四邊形ABCD;
(3)如圖2,已知四邊形ABCD有外心O,且BC=8,sin∠BDC=,求OC的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com