【題目】證明命題角的平分線上的點(diǎn)到角的兩邊的距離相等,要根據(jù)題意,畫出圖形,并用符號表示已知和求證,寫出證明過程,下面是小明同學(xué)根據(jù)題意畫出的圖形,并寫出了不完整的已知和求證.

已知:如圖,OC是∠AOB的角平分線,點(diǎn) P OC 上, 求證:

(要求:請你補(bǔ)全已知和求證,并寫出證明過程.)

【答案】PDOAD,PEOBE,PD=PE.證明見解析.

【解析】

根據(jù)題意、結(jié)合圖形寫出已知和求證,證明OPD≌△OPE,根據(jù)全等三角形的性質(zhì)即可得到結(jié)論.

已知:如圖,OC是∠AOB的角平分線,點(diǎn)POC上,PDOAD,PEOBE,求證:PD=PE

證明:∵PDOA,PEOB,

∴∠PDO=PEO=90°,

OC是∠AOB的角平分線,

∴∠AOC=∠BOC

PDOPEO中,

∴△PDO≌△PEOAAS),

PD=PE

故答案為:PDOAD,PEOBEPD=PE

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知反比例函數(shù),(k為常數(shù),k≠1).

(1)若點(diǎn)A(1,2)在這個函數(shù)的圖象上,求k的值;

(2)若在這個函數(shù)圖象的每一分支上,yx的增大而增大,求k的取值范圍;

(3)若k=13,試判斷點(diǎn)B(3,4),C(2,5)是否在這個函數(shù)的圖象上,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:

1)(﹣3)﹣(﹣2+(﹣4);

2)﹣10+14+168;

3(4)×(5)90÷(15);

4)﹣23÷×(﹣2

5)(+×(﹣36);

6)﹣14×[2﹣(﹣32]

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,連接BD,點(diǎn)OBD的中點(diǎn),若M、N是邊AD上的兩點(diǎn),連接MO、NO,并分別延長交邊BC于兩點(diǎn)M′、N′,則圖中的全等三角形共有( 。

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)分別交y軸、x 軸于A、B兩點(diǎn),拋物線過A、B兩點(diǎn)。(1)求這個拋物線的解析式;(2)作垂直x軸的直線x=t,在第一象限交直線AB于M,交這個拋物線于N。求當(dāng)t 取何值時,MN有最大值?最大值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,半徑為1個單位的圓片上有一點(diǎn)A與數(shù)軸上的原點(diǎn)重合,AB是圓片的直徑.(注:結(jié)果保留π )

(1)把圓片沿數(shù)軸向右滾動半周,點(diǎn)B到達(dá)數(shù)軸上點(diǎn)C的位置,點(diǎn)C表示的數(shù)是   數(shù)(填“無理”或“有理”),這個數(shù)是   ;

(2)把圓片沿數(shù)軸滾動2周,點(diǎn)A到達(dá)數(shù)軸上點(diǎn)D的位置,點(diǎn)D表示的數(shù)是   ;

(3)圓片在數(shù)軸上向右滾動的周數(shù)記為正數(shù),圓片在數(shù)軸上向左滾動的周數(shù)記為負(fù)數(shù),依次運(yùn)動情況記錄如下:+2,﹣1,+3,﹣4,﹣3

   次滾動后,A點(diǎn)距離原點(diǎn)最近,第   次滾動后,A點(diǎn)距離原點(diǎn)最遠(yuǎn).

當(dāng)圓片結(jié)束運(yùn)動時,A點(diǎn)運(yùn)動的路程共有   ,此時點(diǎn)A所表示的數(shù)是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)閱讀理解:

如圖①,在ABC中,若AB=10,AC=6,求BC邊上的中線AD的取值范圍.

解決此問題可以用如下方法:延長AD到點(diǎn)E使DE=AD,再連接BE(或?qū)?/span>ACD繞著點(diǎn)D逆時針旋轉(zhuǎn)180°得到EBD),把AB、AC,2AD集中在ABE中,利用三角形三邊的關(guān)系即可判斷.

中線AD的取值范圍是 ;

(2)問題解決:

如圖②,在ABC中,D是BC邊上的中點(diǎn),DEDF于點(diǎn)D,DE交AB于點(diǎn)E,DF交AC于點(diǎn)F,連接EF,求證:BE+CFEF;

(3)問題拓展:

如圖③,在四邊形ABCD中,B+D=180°,CB=CD,BCD=140°,以為頂點(diǎn)作一個70°角,角的兩邊分別交AB,AD于E、F兩點(diǎn),連接EF,探索線段BE,DF,EF之間的數(shù)量關(guān)系,并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如下圖,在平面直角坐標(biāo)系上有個點(diǎn)P(1,0),點(diǎn)P1次向上跳動1個單位至點(diǎn)P1(1,1),緊接著第2次向左跳動2個單位至點(diǎn)P2(-1,1),第3次向上跳動1個單位,第4次向右跳動3個單位,第5次又向上跳動1個單位,第6次向左跳動4個單位,依此規(guī)律跳動下去,點(diǎn)P2019次跳動至點(diǎn)P2019的坐標(biāo)是_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】

1)在數(shù)軸上表示下列各數(shù):0,–25,–2,+5,

2)將上列各數(shù)用“<”連接起來:___________ _____________________

查看答案和解析>>

同步練習(xí)冊答案