如圖,操作:把正方形CGEF的對角線CE放在正方形ABCD的邊BC的延長線上(CG>BC),取線段AE的中點(diǎn)M.
探究:線段MD、MF的關(guān)系,并加以證明.
說明:(1)如果你經(jīng)歷反復(fù)探索,沒有找到解決問題的方法,請你把探索過程中的某種思路寫出來(要求至少寫3步);
(2)在你經(jīng)歷說明(1)的過程后,可以從下列①、②、③中選取一個(gè)補(bǔ)充或更換已知條件,完成你的證明.
注意:選、偻瓿勺C明得10分;選、谕瓿勺C明得7分;選、弁瓿勺C明得5分.
①DM的延長線交CE于點(diǎn)N,且AD=NE;②將正方形CGEF6繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)45°(如圖),其他條件不變;③在②的條件下,且CF=2AD.
附加題:將正方形CGEF繞點(diǎn)C旋轉(zhuǎn)任意角度后(如圖),其他條件不變.探究:線段MD、MF的關(guān)系,并加以證明.
證明:關(guān)系是:MD=MF,MD⊥MF
如圖,延長DM交CE于點(diǎn)N,連接FD、FN

∵正方形ABCD,
∴ADBE,AD=DC,
∴∠1=∠2
又∵AM=EM,∠3=∠4
∴△ADM≌△ENM
∴AD=EN,MD=MN
∵AD=DC,∴DC=NE
又∵正方形CGEF,∴∠FCE=∠NEF=45°,F(xiàn)C=FE,∠CFE=90°
又∵正方形ABCD,∴∠BCD=90°.∴∠DCF=∠NEF=45°
∴△FDC≌△FNE
∴FD=FN,∠5=∠6
∵∠CFE=90°,∴∠DFN=90°
又∵DM=MN=
1
2
DN,
∴M為DN的中點(diǎn),
∴FM=
1
2
DN,
∴MD=MF,DM⊥MF
思路一:∵四邊形ABCD、CGEF是正方形,
∴AB=BC=CD=AD,∠B=∠BCD=∠CDA=∠BAD=90°
CF=EF=EG=CG,∠G=∠GEF=∠EFC=∠FCG=90°,∠FCE=∠FEC=45°
∴∠DCF=∠FEC
思路二:
延長DM交CE于N,∵四邊形ABCD、CGEF是正方形
∴ADCE,∴∠DAM=∠NEM
又∵∠DMA=∠NME,AM=EM,∴△ADM≌△ENM
思路三:∵正方形CGEF,
∴∠FCE=∠FEC=45°
又∵正方形ABCD,
∴∠DCB=90°.
∴∠DCF=180°-∠DCB-∠FCE=45°,∠DCF=∠FEC=45°
選取條件①
證明:如圖
∵正方形ABCD,
∴ADBE,AD=DC,∴∠1=∠2
∵AD=NE,∠3=∠4,∴△ADM≌△ENM
∴MD=MN
又∵AD=DC,
∴DC=NE
又∵正方形CGEF,
∴FC=FE,∠FCE=∠FEN=45°.
∴∠FCD=∠FEN=45°
∴△FDC≌△FNE
∴FD=FN,∠5=∠6,
∴∠DFN=∠CFE=90°
∴MD=MF,MD⊥MF
選取條件②
證明:如圖,
延長DM交FE于N

∵正方形ABCD、CGEF
∴CF=EF,AD=DC,∠CFE=90°,ADFE.
∴∠1=∠2
又∵M(jìn)A=ME,∠3=∠4,
∴△AMD≌△EMN
∴MD=MN,AD=EN.
∵AD=DC,
∴DC=NE
又∵FC=FE,
∴FD=FN
又∵∠DFN=90°,
∴FM⊥MD,MF=MD.
選取條件③
證明:如圖,
延長DM交FE于N.
∵正方形ABCD、CGEF
∴CF=EF,AD=DC,∠CFE=90°,ADFE
∴∠1=∠2
又∵M(jìn)A=ME,∠3=∠4,
∴△AMD≌△EMN
∴AD=EN,MD=MN.
∵CF=2AD,EF=2EN
∴FD=FN.又∵∠DFN=90°,
∴MD=MF,MD⊥MF

附加題:
證明:如圖
過點(diǎn)E作AD的平行線分別交DM、DC的延長線于N、H,連接DF、FN
則∠ADC=∠H,∠3=∠4.
∵AM=ME,∠1=∠2,
∴△ADM≌△ENM
∴DM=NM,AD=EN.
∵正方形ABCD、CGEF
∴AD=DC,F(xiàn)C=FE,∠ADC=∠FCG=∠CFE=90°,CGFE
∴∠H=90°,∠5=∠NEF,DC=NE
∴∠DCF+∠7=∠5+∠7=90°
∴∠DCF=∠5=∠NEF
∵FC=FE,∴△DCF≌△NEF
∴FD=FN,∠DFC=∠NFE.
∵∠CFE=90°
∴∠DFN=90°.
∴DM=FM,DM⊥FM.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,梯形ABCD中,ADBC,∠B=90°,AD=DC=2,∠ADC=120°,求梯形ABCD的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,梯形ABCD中,ABCD,且BC+CD=AB,設(shè)∠A=X°,∠B=Y°,那么y關(guān)于x的函數(shù)關(guān)系式是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,在梯形ABCF中,∠ABC=90°,AFBC,BA與CF的延長線交于點(diǎn)E,D為AF延長線上一點(diǎn),且BD⊥CE于G,CF=BC
(1)求證:EF=FD;
(2)若FG=2,CG=6,求四邊形ABGF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖所示,在梯形ABCD中,ABDC,EF是梯形的中位線,AC交EF于G,BD交EF于H,以下說法錯(cuò)誤的是( 。
A.ABEF
B.AB+DC=2EF
C.四邊形AEFB和四邊形ABCD相似
D.EG=FH

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖是一種“羊頭”形圖案,其作法是:從正方形①開始,以它的一邊為斜邊,向外作等腰直角三角形,然后再以其直角邊為邊,分別向外作正方形②和②′,…,依此類推,若正方形①的邊長為64cm,則正方形⑦的邊長為______cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

一條對角線平分一個(gè)矩形的內(nèi)角,這個(gè)矩形會是正方形嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知正方形ABCD中,對角線AC、BD交于O點(diǎn),過O點(diǎn)作OE⊥OF分別交DC于E,交BC于F,∠FEC的角平分線EP交直線AC于P
(1)求證:OE=OF;
(2)寫出線段EF、PC、BC之間的一個(gè)等量關(guān)系式,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

正方形ABCD中,∠EAF=45°,BE=3,DF=4,則EF的長是______.

查看答案和解析>>

同步練習(xí)冊答案