如圖,直線軸于點(diǎn),直線軸于點(diǎn),直線軸于點(diǎn),…直線軸于點(diǎn).函數(shù)的圖象與直線,,…分別交于點(diǎn),,…;函數(shù)的圖象與直線,,…分別交于點(diǎn),,,….如果的面積記作,四邊形的面積記作,四邊形的面積記作,…四邊形的面積記作,那么S2012          .
2011.5解析:
根據(jù)題意得:的坐標(biāo)為(n-1,n-1),的坐標(biāo)為(n,n),的坐標(biāo)為(n,2n)
的坐標(biāo)為(n-1,2n-2).,,
∴S2012=2011.5
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,平面直角坐標(biāo)系中,矩形ABCO的邊OA在y正半軸上,OC在x正半軸上,點(diǎn)D是線段OC上一點(diǎn),過(guò)點(diǎn)D作DE⊥AD交直線BC于點(diǎn)E,以A、D、E為頂點(diǎn)作矩形ADEF.
(1)求證:△AOD∽△DCE;
(2)若點(diǎn)A坐標(biāo)為(0,4),點(diǎn)C坐標(biāo)為(7,0).
①當(dāng)點(diǎn)D的坐標(biāo)為(5,0)時(shí),拋物線y=ax2+bx+c過(guò)A、F、B三點(diǎn),求點(diǎn)F的坐標(biāo)及a、b、c的值;
②若點(diǎn)D(k,0)是線段OC上任意一點(diǎn),點(diǎn)F是否還在①中所求的拋物線上?如果在,請(qǐng)說(shuō)明理由;如果不在,請(qǐng)舉反例說(shuō)明;
(3)若點(diǎn)A的坐標(biāo)是(0,m),點(diǎn)C的坐標(biāo)是(n,0),當(dāng)點(diǎn)D在線段OC上運(yùn)動(dòng)時(shí),是否也存在一條拋物線,使得點(diǎn)F都落在該拋物線上?若存在,請(qǐng)直接用含m精英家教網(wǎng)、n的代數(shù)式表示該拋物線;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知,如圖1,在平面直角坐標(biāo)系內(nèi),直線l1:y=-x+4與坐標(biāo)軸分別相交于點(diǎn)A、B,與直線l2y=
13
x
相交于點(diǎn)C.
(1)求點(diǎn)C的坐標(biāo);
(2)如圖1,平行于y軸的直線x=1交直線l1于點(diǎn)E,交直線l2于點(diǎn)D,平行于y軸的直x=a交直線l1于點(diǎn)M,交直線l2于點(diǎn)N,若MN=2ED,求a的值;
(3)如圖2,點(diǎn)P是第四象限內(nèi)一點(diǎn),且∠BPO=135°,連接AP,探究AP與BP之間的位置關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知,如圖1,在平面直角坐標(biāo)系內(nèi),直線l1:y=-x+4與坐標(biāo)軸分別相交于點(diǎn)A、B,與直線l2數(shù)學(xué)公式相交于點(diǎn)C.
(1)求點(diǎn)C的坐標(biāo);
(2)如圖1,平行于y軸的直線x=1交直線l1于點(diǎn)E,交直線l2于點(diǎn)D,平行于y軸的直x=a交直線l1于點(diǎn)M,交直線l2于點(diǎn)N,若MN=2ED,求a的值;
(3)如圖2,點(diǎn)P是第四象限內(nèi)一點(diǎn),且∠BPO=135°,連接AP,探究AP與BP之間的位置關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年江蘇省揚(yáng)州市邗江區(qū)九年級(jí)上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,拋物線與x軸交于點(diǎn)A(—2,0),交y軸于點(diǎn)B(0,).直過(guò)點(diǎn)A與y軸交于點(diǎn)C,與拋物線的另一個(gè)交點(diǎn)是D.

(1)求拋物線與直線的解析式;

(2)設(shè)點(diǎn)P是直線AD下方的拋物線上一動(dòng)點(diǎn)(不與點(diǎn)A、D重合),過(guò)點(diǎn)P作 y軸的平行線,交直線AD于點(diǎn)M,作DE⊥y軸于點(diǎn)E.探究:是否存在這樣的點(diǎn)P,使四邊形PMEC是平行四邊形?若存在請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;

(3)在(2)的條件下,作PN⊥AD于點(diǎn)N,設(shè)△PMN的周長(zhǎng)為m,點(diǎn)P的橫坐標(biāo)為x,求m與x的函數(shù)關(guān)系式,并求出m的最大值.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011年初中畢業(yè)升學(xué)考試(廣西柳州卷)數(shù)學(xué) 題型:選擇題

如圖,直線l:y=x+2與y軸交于點(diǎn)A,將直線l繞點(diǎn)A旋轉(zhuǎn)90º后,所得直

線的解析式為【    】

A.y=x-2                B.y=-x+2

C.y=-x-2              D.y=-2x-1

 

查看答案和解析>>

同步練習(xí)冊(cè)答案