【題目】如圖,在△MBN中,BM=6,點A、C、D分別在MB、NB、MN上,四邊形ABCD為平行四邊形,且∠NDC=∠MDA,則ABCD的周長是(
A.24
B.18
C.16
D.12

【答案】D
【解析】解:∵四邊形ABCD為平行四邊形, ∴AD=BC,DC=AB,AB∥DC,AD∥BN,
∴∠N=∠ADM,∠M=∠NDC,
∵∠NDC=∠MDA,
∴∠N=∠NDC,∠M=∠MDA,∠M=∠N,
∴CN=DC,AD=MA,NB=MB,
∴平行四邊形ABCD的周長是 BM+BN=6+6=12,
所以答案是:D.
【考點精析】本題主要考查了平行四邊形的性質和相似三角形的判定與性質的相關知識點,需要掌握平行四邊形的對邊相等且平行;平行四邊形的對角相等,鄰角互補;平行四邊形的對角線互相平分;相似三角形的一切對應線段(對應高、對應中線、對應角平分線、外接圓半徑、內切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方才能正確解答此題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】我們規(guī)定:將一個平面圖形分成面積相等的兩部分的直線叫做該平面圖形的“等積線”,等積線被這個平面圖形截得的線段叫做該圖形的“等積線段”(例如三角形的中線就是三角形的等積線段).已知菱形的邊長為4,且有一個內角為60°,設它的等積線段長為m,則m的取值范圍是.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】自開展學生每天鍛煉1小時活動后,我市某中學根據(jù)學校實際情況,決定開設A:毽子,B:籃球,C:跑步,D:跳繩四種運動項目.為了了解學生最喜歡哪一種項目,隨機抽取了部分學生進行調查,并將調查結果繪制成如圖統(tǒng)計圖.請結合圖中信息解答下列問題:

1)該校本次調查中,共調查了多少名學生?

2)請將兩個統(tǒng)計圖補充完整;

3)在本次調查的學生中隨機抽取1人,他喜歡跑步的概率有多大?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】用一元一次方程解下列應用題

據(jù)國家統(tǒng)計局發(fā)布的數(shù)據(jù)顯示,在我國的664個城市中,按水資源可分為暫不缺水城市一般缺水城市和嚴重缺水城市三類.其中,暫不缺水城市比嚴重缺水城市的4倍少50個,一般缺水城市是嚴重缺水城市的2.

(1)求嚴重缺水城市有多少個?

(2)為了解決缺水的問題,國家啟動了多個水利工程,緩解了部分嚴重缺水城市的情況,使一般性缺水城市的數(shù)目是嚴重缺水城市的9倍,求現(xiàn)在一般性缺水的城市有多少個?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】初三年(4)班要舉行一場畢業(yè)聯(lián)歡會,主持人同時轉動下圖中的兩個轉盤,由一名同學在轉動前來判斷兩個轉盤上指針所指的兩個數(shù)字之和是奇數(shù)還是偶數(shù),如果判斷錯誤,他就要為大家表演一個節(jié)目;如果判斷正確,他可以指派別人替自己表演節(jié)目.現(xiàn)在輪到小明來選擇,小明不想自己表演,于是他選擇了偶數(shù).小明的選擇合理嗎?從概率的角度進行分析(要求用樹狀圖或列表方法求解)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】能判定一個四邊形是菱形的條件是(

A. 對角線互相平分且相等 B. 對角線互相垂直且相等

C. 對角線互相垂直且對角相等 D. 對角線互相垂直,且一條對角線平分一組對角

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列給出的條件中,能識別一個四邊形是菱形的是(

A. 有一組對邊平行且相等,有一個角是直角

B. 兩組對邊分別相等,且有一組鄰角相等

C. 有一組對邊平行,另一組對邊相等,且對角線互相垂直

D. 有一組對邊平行且相等,且有一條對角線平分一個內角

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學有一塊四邊形的空地ABCD,如圖所示,學校計劃在空地上種植草皮,經(jīng)測量∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m.
(1)試判斷△BCD的形狀;
(2)若每平方米草皮需要200元,問學校需要投入多少資金買草皮?

查看答案和解析>>

同步練習冊答案