【題目】如圖,線(xiàn)段AB=8,射線(xiàn)BG⊥AB,P為射線(xiàn)BG上一點(diǎn),以AP為邊作正方形APCD,且點(diǎn)C、D與點(diǎn)B在AP兩側(cè),在線(xiàn)段DP上取一點(diǎn)E,使∠EAP=∠BAP,直線(xiàn)CE與線(xiàn)段AB相交于點(diǎn)F(點(diǎn)F與點(diǎn)A、B不重合).
(1)求證:△AEP≌△CEP;
(2)判斷CF與AB的位置關(guān)系,并說(shuō)明理由;
(3)求△AEF的周長(zhǎng).
【答案】(1)見(jiàn)解析;(2)CF⊥AB,見(jiàn)解析;(3)16
【解析】
(1)四邊形APCD正方形,則DP平分∠APC,PC=PA,∠APD=∠CPD=45°,即可求解;
(2)△AEP≌△CEP,則∠EAP=∠ECP,而∠EAP=∠BAP,則∠BAP=∠FCP,又∠FCP+∠CMP=90°,則∠AMF+∠PAB=90°即可求解;
(3)證明△PCN≌△APB(AAS),則CN=PB=BF,PN=AB,即可求解.
(1)證明:∵四邊形APCD正方形,
∴DP平分∠APC,PC=PA,
∴∠APD=∠CPD=45°,
∴△AEP≌△CEP(SAS);
(2)CF⊥AB,理由如下:
∵△AEP≌△CEP,
∴∠EAP=∠ECP,
∵∠EAP=∠BAP,
∴∠BAP=∠FCP,
∵∠FCP+∠CMP=90°,∠AMF=∠CMP,
∴∠AMF+∠PAB=90°,
∴∠AFM=90°,
∴CF⊥AB;
(3)過(guò)點(diǎn) C 作CN⊥PB.
∵CF⊥AB,BG⊥AB,
∴FC∥BN,
∴∠CPN=∠PCF=∠EAP=∠PAB,
又AP=CP,
∴△PCN≌△APB(AAS),
∴CN=PB=BF,PN=AB,
∵△AEP≌△CEP,
∴AE=CE,
∴AE+EF+AF
=CE+EF+AF
=BN+AF
=PN+PB+AF
=AB+CN+AF
=AB+BF+AF
=2AB
=16.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀以下材料:對(duì)數(shù)的創(chuàng)始人是蘇格蘭數(shù)學(xué)家納皮爾,納皮爾發(fā)明對(duì)數(shù)是在指數(shù)書(shū)寫(xiě)方式之前,直到18世紀(jì)瑞士數(shù)學(xué)家歐拉才發(fā)現(xiàn)指數(shù)與對(duì)數(shù)之間的聯(lián)系.
對(duì)數(shù)的定義:一般地,若ax=N(a>0,a≠1),那么x叫做以a為底N的對(duì)數(shù),記作:記作:x=logaN.比如指數(shù)式24=16可以轉(zhuǎn)化為4=log216,對(duì)數(shù)式2=log525可以轉(zhuǎn)化為52=25.
我們根據(jù)對(duì)數(shù)的定義可得到對(duì)數(shù)的一個(gè)性質(zhì):
loga(MN)=logaM+logaN(a>0,a≠1,M>0,N>0);理由如下:logaM=m,logaN=n,則M=am,N=an
∴MN=aman=am+n,由對(duì)數(shù)的定義得m+n=loga(MN)
又∵m+n=logaM+logaN
∴loga(MN)=logaM+logaN
解決以下問(wèn)題:
(1)將指數(shù)式53=125轉(zhuǎn)化為對(duì)數(shù)式 ;
(2)log24= ,log381= ,log464= .(直接寫(xiě)出結(jié)果)
(3)證明:證明loga=logaM﹣logaN(a>0,a≠1,M>0,N>0).(寫(xiě)出證明過(guò)程)
(4)拓展運(yùn)用:計(jì)算計(jì)算log34+log312﹣log316= .(直接寫(xiě)出結(jié)果)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△EBF為等腰直角三角形,點(diǎn)B為直角頂點(diǎn), 四邊形ABCD是正方形.
⑴ 求證:△ABE≌△CBF;
⑵ CF與AE有什么特殊的位置關(guān)系?請(qǐng)證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】思維探索:
在正方形ABCD中,AB=4,∠EAF的兩邊分別交射線(xiàn)CB,DC于點(diǎn)E,F,∠EAF=45°.
(1)如圖1,當(dāng)點(diǎn)E,F分別在線(xiàn)段BC,CD上時(shí),△CEF的周長(zhǎng)是 ;
(2)如圖2,當(dāng)點(diǎn)E,F分別在CB,DC的延長(zhǎng)線(xiàn)上,CF=2時(shí),求△CEF的周長(zhǎng);
拓展提升:
如圖3,在Rt△ABC中,∠ACB=90°,CA=CB,過(guò)點(diǎn)B作BD⊥BC,連接AD,在BC的延長(zhǎng)線(xiàn)上取一點(diǎn)E,使∠EDA=30°,連接AE,當(dāng)BD=2,∠EAD=45°時(shí),請(qǐng)直接寫(xiě)出線(xiàn)段CE的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,E是矩形ABCD的邊BC上一點(diǎn),EF⊥AE,分別交AC,CD于點(diǎn)M,F,BG⊥AC,垂足為G,BG交AE于點(diǎn)H.
(1)求證:△ABE∽△ECF;
(2)找出與△ABH相似的三角形,并證明;
(3)若E是BC中點(diǎn),BC=2AB,AB=4,求EM的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】滴滴快車(chē)是一種便捷的出行工具,某地的計(jì)價(jià)規(guī)則如下表:
計(jì)費(fèi)項(xiàng)目 | 里程費(fèi) | 時(shí)長(zhǎng)費(fèi) | 遠(yuǎn)途費(fèi) |
單價(jià) | 2元/公里 | 元/分鐘 | 1元/公里 |
注:車(chē)費(fèi)由里程費(fèi)、時(shí)長(zhǎng)費(fèi)、遠(yuǎn)途費(fèi)三部分構(gòu)成,其中里程費(fèi)按行車(chē)的實(shí)際里程計(jì)算;時(shí)長(zhǎng)費(fèi)按行車(chē)的實(shí)際時(shí)間計(jì)算;遠(yuǎn)途費(fèi)的收取方式為:行車(chē)?yán)锍?/span>7公里以?xún)?nèi)(含7公里)不收遠(yuǎn)途費(fèi),超過(guò)7公里的,超出部分每公里收1元. |
小李與小張分別從不同地點(diǎn),各自同時(shí)乘坐滴滴快車(chē),到同一地點(diǎn)相見(jiàn),已知到達(dá)約定地點(diǎn)時(shí)他們的實(shí)際行車(chē)?yán)锍谭謩e為7公里與9公里,兩人付給滴滴快車(chē)的乘車(chē)費(fèi)相同.其中一人先到達(dá)約定地點(diǎn),他等候另一人的時(shí)間等于他自己實(shí)際乘車(chē)時(shí)間,且恰好是另一人實(shí)際乘車(chē)時(shí)間的一半,則小李的乘車(chē)費(fèi)為______元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在正方形ABCD中,點(diǎn)E是邊BC上一點(diǎn),連接AE,過(guò)點(diǎn)E作EM⊥AE,交對(duì)角線(xiàn)AC于點(diǎn)M,過(guò)點(diǎn)M作MN⊥AB,垂足為N,連接NE.
(1)求證:AE=NE+ME;
(2)如圖2,延長(zhǎng)EM至點(diǎn)F,使EF=EA,連接AF,過(guò)點(diǎn)F作FH⊥DC,垂足為H.猜想CH與FH存在的數(shù)量關(guān)系,并證明你的結(jié)論;
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】《九章算術(shù)》是我國(guó)古代第一部數(shù)學(xué)專(zhuān)著,它的出現(xiàn)標(biāo)志中國(guó)古代數(shù)學(xué)形成了完整的體系.“折竹抵地”問(wèn)題源自《九章算術(shù)》中:“今有竹高一丈,末折抵地,去本四尺,問(wèn)折者高幾何?”意思是:一根竹子,原高一丈,一陣風(fēng)將竹子折斷,其竹梢恰好抵地,抵地處離竹子底部4尺遠(yuǎn)(如圖),則折斷后的竹子高度為多少尺?(1丈=10尺)( )
A.3B.5C.4.2D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】居民區(qū)內(nèi)的“廣場(chǎng)舞”引起媒體關(guān)注,民勤電視臺(tái)為此進(jìn)行過(guò)專(zhuān)訪(fǎng)報(bào)到.小平想了解本小區(qū)居民對(duì)“廣場(chǎng)舞”的看法,進(jìn)行了一次抽樣調(diào)查,把居民對(duì)“廣場(chǎng)舞”的看法分為四個(gè)層次:.非常贊同;.贊同但要有時(shí)間限制;.無(wú)所謂;.不贊同.并將調(diào)查結(jié)果繪制了圖①和圖②兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)你根據(jù)圖中提供的信息解答下列問(wèn)題:
(1)求本次被抽查的居民有多少人?
(2)將圖①和圖②補(bǔ)充完整.
(3)求圖②中“”層次所在扇形的圓心角度數(shù).
(4)估計(jì)該小區(qū)5000名居民中對(duì)“廣場(chǎng)舞”的看法表示贊同(包括層次和層次)的大約有多少人.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com