如圖,點O為正方形ABCD的中心,BE平分∠DBC交DC于點E,延長BC到點F,使FC=EC,連接DF交BE的延長線于點H,連接OH交DC于點G,連接HC.則以下四個結論中正確結論為(  )  
①BF=2OH;②∠CHF=45°;③BC=4GH;④DH2=HE•HB.
分析:①首先可證得△BCE≌△DCF,繼而可求得∠EHF=90°,利用等腰三角形中的三線合一的性質,可證得DH=FH,又由OB=OD,即可證得OH是△DBF的中位線,根據(jù)三角形中位線的性質,即可判定BF=2OH;
②由①易求得∠HFC=67.5°,然后利用直角三角形斜邊上的中線等于斜邊的一半,易證得CH=HF,即可求得∠HCF=∠HFC,繼而求得∠CHF=45°;
③由三角形中位線的性質,可證得GH=
1
2
CF=
1
2
CE<
1
2
CG,CG=
1
2
BC,可得BC>4GH;
④易證得△DHE∽△BHD,根據(jù)相似三角形的對應邊成比例,即可證得DH2=HE•HB.
解答:解:①∵四邊形ABCD是正方形,
∴BC=DC,∠BCE=∠DCF=90°,
在△BCE和△DCF中,
BC=DC
∠BCE=∠DCF
EC=FC

∴△BCE≌△DCF,
∴∠CDF=∠CBE,
∵∠CDF+∠F=90°,
∴∠CBE+∠F=90°,
∴∠BHF=90°,
∴BH⊥DF,
∵BE平分∠DBC,
∴DH=HF,
∵OB=OD,
∴OH是△DBF的中位線,
∴OH∥BF
∴OH=
1
2
BF,
即BF=2OH;
故正確;
②∵CE=CF,∠ECF=90°,
∴∠EFC=45°,
∵∠HFE=22.5°,
∴∠HFC=∠HFE+∠EFC=67.5°,
∵DH=FH,∠DCF=90°,
∴CH=FH=
1
2
DF,
∴∠HCF=∠HFC=67.5°,
∴∠CHF=180°-∠HCF-∠HFC=45°;
故正確;
③∵OH是△BFD的中位線,
∴OG,GH分別是△DBC與△DCF的中位線,
∴DG=CG=
1
2
BC,GH=
1
2
CF,
∵CE=CF,
∴GH=
1
2
CF=
1
2
CE,
∵CE<CG=
1
2
BC,
∴GH<
1
4
BC,
即BC>4GH,
故錯誤;
④∵∠DBF=45°,BE是∠DBF的平分線,
∴∠DBH=22.5°,
∵DE=EF,
∴∠CDF=
1
2
∠CEF=22.5°,
∴∠DBH=∠CDF,
∵∠BHD=∠BHD,
∴△DHE∽△BHD,
∴DH:BH=HE:DH,
∴DH2=HE•HB,
故正確;
所以①②④正確.
故選B.
點評:此題考查了相似三角形的判定與性質、正方形的性質、等腰直角三角形的性質以及三角形中位線的性質.此題難度較大,注意掌握數(shù)形結合思想的應用,注意掌握輔助線的作法.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,點F為正方形內一點,在正方形外有一點E,滿足∠ABF=∠CBE,BF=BE.
(1)求證:△ABF≌△CBE;
(2)連接EF,試判斷△BEF的形狀,并證明你的結論.
(3)當CF:BF=1:2,∠BFC=135°時,求cos∠FCE的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標系中,正方形OABC的面積是16.
(1)求正方形OABC的對角線的交點D的坐標;
精英家教網(wǎng)
(2)直線y=2x+8交x軸于E,交y軸于F,它沿x軸正方向以每秒移動1個單位長度的速度平移,設平移的時間為t秒,問是否存在t的
值,使直線EF平分正方形OABC的面積?若存在,請求出t的值;若不存在,請說明理由;
精英家教網(wǎng)
(3)如圖,點P為正方形OABC的對角線AC上的動點(端點A、C除外),PM⊥PO,交直線AB于M,給出下列兩個結論:①
PC
BM
的值不變;②
PC
AM
的值不變;其中有且只有一個結論是正確的,請你選出正確的結論,予以證明并求其值.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,點F為正方形ABCD的邊CD的中點,E為BC上一點,M為EF上一點,且D、M關于AF對稱,B、M關于AE對稱,∠CFE的平分線交AE的延長線于G,交BC于N,連CG,下列結論:①△AFG為等腰直角三角形;②CG=2
2
CN;③S△CEF=S△ABE,其中正確的有(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,點E為正方形ABCD的邊CD上一點,AB=10,AE=4.△DAE旋轉后能與△DCF重合.
(1)旋轉中心是點
D
D
,旋轉了
90
90
度.
(2)連接EF,則△DEF是
等腰直角
等腰直角
三角形.
(3)四邊形DEBF的周長和面積分別是
20+4
29
20+4
29
100
100

查看答案和解析>>

同步練習冊答案