【題目】某飲料廠以300千克的A種果汁和240千克的B種果汁為原料,配制生產(chǎn)甲、乙兩種新型飲料,已知每千克甲種飲料含0.6千克A種果汁,含0.3千克B種果汁;每千克乙種飲料含0.2千克A種果汁,含0.4千克B種果汁.飲料廠計劃生產(chǎn)甲、乙兩種新型飲料共650千克,設該廠生產(chǎn)甲種飲料x(千克).
(1)列出滿足題意的關(guān)于x的不等式組,并求出x的取值范圍;
(2)已知該飲料廠的甲種飲料銷售價是每1千克3元,乙種飲料銷售價是每1千克4元,那么該飲料廠生產(chǎn)甲、乙兩種飲料各多少千克,才能使得這批飲料銷售總金額最大?

【答案】
(1)解:設該廠生產(chǎn)甲種飲料x千克,則生產(chǎn)乙種飲料(650﹣x)千克,

根據(jù)題意得, ,

由①得,x≤425,

由②得,x≥200,

所以,x的取值范圍是200≤x≤425


(2)解:設這批飲料銷售總金額為y元,

根據(jù)題意得,y=3x+4(650﹣x)=3x+2600﹣4x=﹣x+2600,

即y=﹣x+2600,

∵k=﹣1<0,

∴y隨x的增大而減小,

∴當x=200時,這批飲料銷售總金額最大,

則650﹣x=650﹣200=450.

故該飲料廠生產(chǎn)甲種飲料200千克,乙種飲料450千克,才能使得這批飲料銷售總金額最大


【解析】(1)表示出生產(chǎn)乙種飲料(650﹣x)千克,然后根據(jù)所需A種果汁和B種果汁的數(shù)量列出一元一次不等式組,求解即可得到x的取值范圍;(2)根據(jù)銷售總金額等于兩種飲料的銷售額的和列式整理,再根據(jù)一次函數(shù)的增減性求出最大銷售額.
【考點精析】關(guān)于本題考查的一元一次不等式組的應用,需要了解1、審:分析題意,找出不等關(guān)系;2、設:設未知數(shù);3、列:列出不等式組;4、解:解不等式組;5、檢驗:從不等式組的解集中找出符合題意的答案;6、答:寫出問題答案才能得出正確答案.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,拋物線y=x2+ 與y軸相交于點A,點B與點O關(guān)于點A對稱

(1)填空:點B的坐標是
(2)過點B的直線y=kx+b(其中k<0)與x軸相交于點C,過點C作直線l平行于y軸,P是直線l上一點,且PB=PC,求線段PB的長(用含k的式子表示),并判斷點P是否在拋物線上,說明理由;
(3)在(2)的條件下,若點C關(guān)于直線BP的對稱點C′恰好落在該拋物線的對稱軸上,求此時點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是某工件的三視圖,則此工件的表面積為(  )
A.15πcm2
B.51πcm2
C.66πcm2
D.24πcm2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個不透明的袋子中裝有大小、質(zhì)地完全相同的3只球,球上分別標有2,3,5三個數(shù)字.
(1)從這個袋子中任意摸一只球,所標數(shù)字是奇數(shù)的概率是;
(2)從這個袋子中任意摸一只球,記下所標數(shù)字,不放回,再從從這個袋子中任意摸一只球,記下所標數(shù)字.將第一次記下的數(shù)字作為十位數(shù)字,第二次記下的數(shù)字作為個位數(shù)字,組成一個兩位數(shù).求所組成的兩位數(shù)是5的倍數(shù)的概率.(請用“畫樹狀圖”或“列表”的方法寫出過程)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,已知第一象限內(nèi)的點A在反比例函數(shù) 的圖象上,第二象限內(nèi)的點B在反比例函數(shù) 的圖象上,連接OA、OB,若OA⊥OB,OB= OA,則k=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,直線AB經(jīng)過點A(﹣4,0)、B(0,4),⊙O的半徑為1(O為坐標原點),點P在直線AB上,過點P作⊙O的一條切線PQ,Q為切點,則切線長PQ的最小值為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】學校舉辦“大愛鎮(zhèn)江”征文活動,小明為此次活動設計了一個以三座山為背景的圖標(如圖),現(xiàn)用紅、黃兩種顏色對圖標中的A、B、C三塊三角形區(qū)域分別涂色,一塊區(qū)域只涂一種顏色.
(1)請用樹狀圖列出所有涂色的可能結(jié)果;
(2)求這三塊三角形區(qū)域中所涂顏色是“兩塊黃色、一塊紅色”的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在平面直角坐標系中,矩形OABC的頂點O在坐標原點,頂點A、C分別在x軸、y軸的正半軸上,且OA=2,OC=1,矩形對角線AC、OB相交于E,過點E的直線與邊OA、BC分別相交于點G、H.
(1)直接寫出點E的坐標:
(2)求證:AG=CH.
(3)如圖2,以O為圓心,OC為半徑的圓弧交OA與D,若直線GH與弧CD所在的圓相切于矩形內(nèi)一點F,求直線GH的函數(shù)關(guān)系式.
(4)在(3)的結(jié)論下,梯形ABHG的內(nèi)部有一點P,當⊙P與HG、GA、AB都相切時,求⊙P的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】任取不等式組 的一個整數(shù)解,則能使關(guān)于x的方程:2x+k=﹣1的解為非負數(shù)的概率為

查看答案和解析>>

同步練習冊答案