等腰梯形ABCD的上底AD=2,下底BC=4,底角B=45°,建立適當(dāng)?shù)闹苯亲鴺?biāo)系,求各頂點(diǎn)的坐標(biāo).
作AE⊥BC,DF⊥BC分別與E,F(xiàn),則EF=AD=2,BE=CF=1,
直角△ABE中,∠B=45°,則其為等腰直角三角形,因而AE=BE=1,CE=3.
以BC所在的直線為x軸,由B向C的方向?yàn)檎较,AE所在的直線為y軸,由E向A的方向?yàn)檎较蚪⒆鴺?biāo)系,
則A(0,1),B(-1,0),C(3,0),D(2,1).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,等腰梯形ABCD中,ADBC,ABDE,BC=8,AB=6,AD=5,則△CDE的周長(zhǎng)是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,四邊形ABCD中,點(diǎn)E在邊CD上,連接AE、BE.給出下列五個(gè)關(guān)系式:①ADBC;②DE=CE;③∠1=∠2;④∠3=∠4;⑤AD+BC=AB.將其中的三個(gè)關(guān)系式作為題設(shè),另外兩個(gè)作為結(jié)論,構(gòu)成一個(gè)命題.
(1)用序號(hào)寫(xiě)出一個(gè)真命題(書(shū)寫(xiě)形式如:如果×××,那么××).并給出證明;
(2)用序號(hào)再寫(xiě)出三個(gè)真命題(不要求證明);
(3)加分題:真命題不止以上四個(gè),想一想,就能夠多寫(xiě)出幾個(gè)真命題,每多寫(xiě)出一個(gè)真命題就給你加1分,最多加2分.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在梯形ABCD中,ADBC,DF⊥AD,交BC于點(diǎn)F.若線段DF上存在點(diǎn)E,使∠EBC=∠EDC,且∠ECB=45°.
(1)猜想:BE與CD有什么數(shù)量關(guān)系和位置關(guān)系,并說(shuō)明理由.
(2)若DE=3,DF:FC=4,求CD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

P、Q二人沿直角梯形ABCD道路晨練,如圖,ADBC,∠B=90°,AD=240m,BC=270m,P從點(diǎn)A開(kāi)始沿AD邊向點(diǎn)D以1m/s的速度行走,Q從點(diǎn)C開(kāi)始沿CB邊向點(diǎn)B以3m/s的速度跑步.P、Q二人分別從A、C兩點(diǎn)同時(shí)出發(fā)多少時(shí)間時(shí),四邊形PQCD(P、Q二人所在的位置為P、Q點(diǎn))是平行四邊形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:如圖,在梯形ABCD中,ABCD,AD=BC,過(guò)BC上一點(diǎn)E作直線EH,交CD于點(diǎn)F,交AD的延長(zhǎng)線于點(diǎn)H,且EF=FH.
(1)求證:AD=DH+BE.
(2)若AB=10,CD=18,∠ADC=60°,求梯形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在梯形ABCD中,ABCD,BD⊥AD,BC=CD,∠A=60°,CD=2cm.
(1)求cos∠CBD的值;
(2)求梯形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在等腰梯形ABCD中,ABDC,AB=10cm,CD=4cm,點(diǎn)P從點(diǎn)A出發(fā),以1.5cm/秒的速度沿AB向終點(diǎn)B運(yùn)動(dòng);點(diǎn)Q從點(diǎn)C出發(fā),以1cm/秒的速度沿CD向終點(diǎn)D運(yùn)動(dòng)(P、Q兩點(diǎn)中,有一個(gè)點(diǎn)運(yùn)動(dòng)到終點(diǎn)時(shí),所有運(yùn)動(dòng)即終止),設(shè)P、Q同時(shí)出發(fā)并運(yùn)動(dòng)了t秒:
(1)當(dāng)點(diǎn)Q運(yùn)動(dòng)到點(diǎn)D時(shí),PQ把梯形分成兩個(gè)特殊圖形是______、______;
(2)過(guò)點(diǎn)D作DE⊥AB,垂足為E,當(dāng)四邊形DEPQ是矩形時(shí),求t的值;
(3)探索:是否存在這樣的t值,使四邊形PBCQ的面積是四邊形APQD面積的2倍?若存在,求出t的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在梯形ABCD中,已知ABCD,點(diǎn)E為BC的中點(diǎn),設(shè)△DEA的面積為S1,梯形ABCD的面積為S2,則S1與S2的數(shù)量關(guān)系為_(kāi)_____.

查看答案和解析>>

同步練習(xí)冊(cè)答案